High－field transitions in Er－Co and Tm－Co intermetallics with high Co content

講 師：Alexander V．Andreev
（Institute of Physics，Academy of Sciences，Prague，Czech Republic）
日時：2018年9月28日（金）15：00－
場 所：先端物質科学研究科 402N

Intermetallic compounds RCo_{5}（ R is a rare－earth metal）have hexagonal crystal structure of the CaCu_{5} type．Due to lanthanide contraction，the stability of this structure decreases along the R series．The compounds with $\mathrm{R}=\mathrm{Er}$ and Tm can be obtained only in very fast－cooled samples，moreover，only as a second off－stoichiometric phase in ingots with $\mathrm{R}_{2} \mathrm{Co}_{17}$ as a main phase．A partial replacement of Co by Al with a larger atomic radius compensates the effect of lanthanide contraction，and compounds $\mathrm{RCO}_{4} \mathrm{Al}$ with the CaCu_{5} crystal structure exist for all rare－earth elements including $R=E r$ and Tm．Therefore，a systematic study of the whole RCo4Al series can be performed．

We studied high－field magnetization（up to 60 T ）on single crystals of $\mathrm{ErCo}_{4} \mathrm{Al}$ and $\mathrm{TmCo}_{4} \mathrm{Al}$ which can be considered as Al solid solutions in the non－existing compounds ErCos_{5} and TmCo5．Single crystals were prepared by a modified Czochralski method in triarc furnace in Prague．High－field magnetization was measured in Dresden－Rossendorf High－Field Laboratory．
$\mathrm{ErCo}_{4} \mathrm{Al}$ is a ferrimagnet with $T_{\mathrm{C}}=503 \mathrm{~K}$ and $M_{\mathrm{s}}=3.6 \mu_{\mathrm{B}} / \mathrm{f} . \mathrm{u}$ ．（at 2 K ）directed along the c axis．Magnetic moment of the Co sublattice can be found as 5.4μ в from the difference between moment of the Er ${ }^{3+}$ ion and total Ms ．The Er sublattice dominates at low temperatures but weakens with temperature faster than the Co sublattice，so above the compensation point $T_{\text {comp }}=127 \mathrm{~K}$ the total moment is along the Co sublattice．
$\mathrm{ErCo}_{4} \mathrm{Al}$ exhibits two metamagnetic transitions in field applied along the c axis，at 45 and 52 T （at 2 K ）．Magnetic moment above transitions， $9 \mu_{\mathrm{B}}$ ，is equal to M_{Er} ，so the transitions can be attributed to demagnetization of the Co sublattice．Therefore，the state is on halfway to the forced ferromagnet and next transitions should occur above 60 T ． Ratio between magnetization changes at the transitions， $3: 1$ ，shows that at the first transition the Co atoms in the 3 g positions are demagnetized and at the second transition－in the 2 c positions where one of Co atom is substituted by Al ． Critical field of the first transition decreases with increasing temperature and is extrapolated to zero at $T_{\text {comp }}$ ，no transition is observed above this temperature．Second transition is not visible above 40 K ．The transitions are accompanied by pronounced magnetostrictive and magnetoelastic effects．No field－induced transitions are observed in the basal plane of the crystal．

TmCo4Al is a ferrimagnet with $T_{c}=490 \mathrm{~K}$ and $M_{s}=2.1 \mu \mathrm{~B} / \mathrm{f} . \mathrm{u} .(2 \mathrm{~K})$ with，as the Er analogue，uniaxial anisotropy． Below compensation point $T_{\text {comp }}=87 \mathrm{~K}$ the total moment is along the Tm sublattice，above $T_{\text {comp }}$ along Co．Magnetic moment of the Co sublattice in assumption of collinear antiparallel arrangement of the Tm and Co sublattices can be determined as 5μ ．Therefore，the observed magnetic moment $12 \mu \mathrm{в}$ after the metamagnetic transition corresponds to the forced ferromagnetic arrangement of the sublattices（ $M=M T_{m}+M c_{\circ}$ ）and no more transitions should be expected in higher fields（in difference with Er analogue）．

Due to high coercivity at low temperatures（in particular，at $T_{\text {comp }}$ ），a phenomenon of＂negative magnetization＂is observed in both compounds when the magnetization of the sample，passing through $T_{\text {comp }}$ ，becomes oriented against the applied field．At heating，the magnetization becomes＂normal＂when the coercive field decreases below value of applied field．

The high－field behavior of $\mathrm{ErCo}_{4} \mathrm{Al}$ and $\mathrm{TmCo}_{4} \mathrm{Al}$ is discussed in comparison with results on other R－Co intermetallics recently studied on the single crystals（ $\mathrm{Er}_{2} \mathrm{Co}_{17}$ and $\mathrm{Tm}_{2} \mathrm{Co}_{17}$ ）．In these compounds，the total moment in the ground state is along the Co sublattice，not along the R sublattice as in $\mathrm{ErCo}_{4} \mathrm{Al}$ ．

```
5 研究科共同セミナーの認定科目です
担当：石井 勲（先端物質科学研究科）－内線 7042
```

