第529回 物性セミナー・創発的物性物理研究拠点セミナー

Influence of Co substitution in Fe sublattice in RFe₅Al₇ (R = Dy, Ho) intermetallics

講師: Alexander V. Andreev

(Institute of Physics, Academy of Sciences, Prague, Czech Republic)

日 時: 2018 年 10 月 1 日 (月) 15:00-場 所: 先端物質科学研究科 402N

Effects of the Co substitution for Fe on the magnetism of the strongly anisotropic ferrimagnets DyFe₅Al₇ and HoFe₅Al₇ (tetragonal crystal structure of the ThMn₁₂-type) are studied using magnetization measurements in static (up to 14 T) and pulsed (up to 58 T) fields at 2-300 K on single-crystalline samples grown in a triarc furnace by modified Czochralski method. Since the Co analogue of RFe₅Al₇ does not form, the homogeneity range of RFe_{5-x}Co_xAl₇ is expected to be limited. Solubility limit is found as x = 2.5 for both R = Dy and Ho. Within the homogeneity range the lattice parameter a decreases by ~0.7% whereas the parameter a stays constant. The easy-magnetization direction in all compounds is found to be the [110] axis, the [001] axis is the hardest direction.

In the ground state of DyFe₅Al₇, the magnetic moment of the Dy sublattice dominates. The spontaneous magnetic moment is 2.1 μ_B in DyFe₅Al₇ and increases linearly to 3 μ_B for x = 2 due to a decrease of the moment of the 3d-metal sublattice. With increasing temperature, a compensation of the Dy and 3d-metal sublattices is observed, above T_{comp} the total moment is along the 3d metal sublattice. The Curie temperature T_C linearly falls from 231 K for x = 0 to 120 K for x = 2.5. The observed strong decrease of T_C with increasing Co content is unexpected because the Co substitution for Fe in 3d-4f intermetallic compounds practically always leads to increase of the magnetic ordering temperatures due to the strengthening of exchange interactions. At the same time, T_{comp} = 93 K does not change within the homogeneity range. The compounds display anomalies for magnetic field applied along the easy magnetization direction. Two phase transitions are observed for DyFe₅Al₇ at the critical fields $\mu_0 H_{cr1}$ = 30 T and $\mu_0 H_{cr2}$ = 53 T. Both transitions display hysteresis and are of the first order. The pronounced difference between the curves measured for field applied along the [100] and [110] axes reflects a large anisotropy within the basal plane. DyFe_{4.5}Co_{0.5}Al₇ also displays two field-induced phase transitions of the first order, $\mu_0 H_{cr1}$ is also 30 T, $\mu_0 H_{cr2}$ shifts to 43 T. For the compounds with x = 1 and 2, the first-order transitions transform to a wide S-shape curve centered at 35 T. No field-induced transitions are observed along the [100] and [001] axes in all DyFe_{5-x}Co_xAl₇ compounds.

Qualitatively similar results were observed in HoFe_{5-x}Co_xAl₇ solid solutions: unusual strong decrease of $T_{\rm C}$ (from 216 K for x = 0 to 67 K for x = 2.5) and almost unchanged $T_{\rm comp}$. (65 K - 72 K). Along the easy axis, two first-order field-induced magnetic transitions (at 17 T and 37 T) are observed for HoFe₅Al₇ and one transition at 27 T for HoFe₄CoAl₇. The magnetization curve has an S-shape for HoFe₃Co₂Al₇.

For HoFe $_5$ Al $_7$, we studied substitution of Fe atoms also by Cr ones. In contrast to Co substitution where the number of 3d electrons increases, a substitution of Fe by Cr leads to a smaller number of 3d electrons. Nevertheless, T_C also decreases, moreover, very drastically. In HoFe $_4$ CrAl $_7$ it is only 22 K.

5 研究科共同セミナーの認定科目です 担当:石井 勲(先端物質科学研究科)・内線 7042

【世話人】 高根 美武(内7653) 浴野 稔一(内6552) 松村 武(内7021) 木村 昭夫(内7471) 犬丸 啓(内7741) 【広報担当】 稲垣(内5720)

