

自然科学研究機構分子科学研究所

名古屋大学

富山大学

広島大学

**九州シンクロトロン光研究センター** 2022 年 6 月 28 日資料配布

資料配布先:岡崎市政記者会、文部科学記者会、科学記者会、富山大学関係報道機関、 広島大学関係報道機関、名古屋大学関係報道機関、佐賀県内等報道機関

# 放射光の時間構造をアト秒精度で制御

# 論文掲載

## 【概要】

九州シンクロトロン光研究センターの金安達夫副主任研究員、名古屋大学シンクロトロン 光研究センターの高嶋圭史教授、真野篤志技術職員、富山大学の彦坂泰正教授、広島大学放 射光科学研究センターの加藤政博教授(分子科学研究所特任教授)らの共同研究チームは、 アト秒の精度(1アト秒は100京分の1秒;注1)で放射光(注2)の時間構造が制御で きることを実証しました。分子科学研究所の放射光施設 UVSOR を利用して、数フェムト 秒だけ継続する2つの放射光波束の時間差が数アト秒という高い時間精度で制御されてい る様子を2つの異なる手法で観測することに成功しました。

ほぼ光の速度(約30万 km/秒)まで加速された電子をアンジュレータと呼ばれる装置 (注3)を用いて蛇行運動させてやると、強い光を放射します。このような装置を2台直列 に並べると、数フェムト秒(1フェムト秒は1000兆分の1秒;注1)という短い時間持 続する光の波(波束)が2つ続けて放射されます。2つのアンジュレータの間に少しだけ電 子に回り道をさせる特殊な装置を置くことで、2つの波束の間の時間差を精密に制御できま す。これまで、研究グループはこのような光を使って、原子の世界で起きる超高速の現象の 観測や原子の量子状態の制御に成功してきました。しかし一方で、本当に上で述べたような 時間構造を持つ光が発生しているのか、という疑問も残っていました。今回、共同研究グル ープは2つの異なる手法で放射光の時間構造を計測し、その時間構造がアト秒の精度で制御 できていることを示すデータを得ることに成功しました。

アト秒という非常に高い精度で時間構造が精密に制御された放射光を様々な物質の研究 へ応用することで、機能材料や高速動作デバイスの開発、生体分子の放射線損傷の解明など へ役立つことが期待されます。

本研究成果は、英国の科学雑誌 Scientific Reports に掲載されました(2022 年 6 月 11 日 オ ンライン公開)。

#### 1. 研究の背景

ほぼ光の速さまで加速された電子が磁場などの作用により進行方向を曲げられると放射 光と呼ばれる強い光が放出されます。その波長域はテラヘルツ波・赤外線から紫外線・X線 まで広がっていますが、特に、他の強力な光源が少ない真空紫外線やX線の領域で基礎学 術研究から産業応用まで幅広く利用されています。

最近の放射光施設ではアンジュレータと呼ばれる装置が広く利用されています。アンジュ レータの中では周期的に向きの変わる磁場が生成されていて、その中で電子は蛇行運動をし ながら光を放射します。光は波の性質を持っていますが、電子が一回蛇行するたびに光の波 の山と谷が一組生成されます。本研究では電子が10回蛇行するアンジュレータを利用しま したので、10組の山谷からなる波が生成されます。このような有限の数の山谷からなる光 を波束と呼びますが、今の場合、波束の長さはおよそ1ミクロン以下、時間に換算すると数 フェムト秒以下という非常に短いものです。このような光の波束は、非常に短い時間の間に 起きる現象を観察するのに有用です。ところがこれまで、放射光が持つこのような優れた時 間特性を利用することに着目した研究はほとんど行われていませんでした。放射光は、シン クロトロンと呼ばれる円形の電子加速器を利用して生成されていますが、加速器の中では、 およそ1兆個もの電子が塊になって走っています。その塊は数センチメートルほどの長さに 広がっています。この長さを時間に換算すると数10ピコ秒(1ピコ秒は1兆分の1秒;注 1)ほどです。このため電子の塊の出す放射光の持続時間も数10ピコ秒程度となってしま います。一つ一つの電子の出す光は非常に短い持続時間を持っているのに、電子の集団から 放射される光の塊の中にその優れた特性が埋もれてしまって使えない、というのがこれまで の常識でした。

本研究の共同研究チームは、アンジュレータを2台直列に並べることで、2つの短い波束 が続けて出てくること、また、その2つの波束の間の時間差は加速器の技術を用いて非常に 精密に制御できることに着目しました。放射光は波束が雑然と重なったものですが、一つ一 つの電子が出す波束は2つの波束からなる同じ形をしており、その時間差をアト秒の精度で 制御できるはずだと考えました。共同研究チームは、このような光を利用して、量子情報技 術などの基礎となる原子の量子状態制御が可能であることを実証し、さらにはフェムト秒か らアト秒という極めて短い時間で原子の状態が変化する様子を観測することにも成功しま した。このような実験は、精密に制御されたレーザー光線を用いる以外の方法はないという それまでの常識を覆す成果でした。放射光は極端紫外から X 線までの広い波長範囲をカバ ーする光源です。通常のレーザー装置では得ることのできない、これらの波長域で、光の超 高速特性を利用する研究に道を開く研究成果として注目を集めています。しかし、その一方 で、個々の放射波束は本当にそのような精密に制御された時間構造を持っているのだろうか、 という疑問も残っていました。そこで、共同研究チームは2つの異なる手法で実験を行って みました。



図1. アンジュレータによる放射光発生の模式図。放射光パルスの時間幅は電子集団の空間拡が りで決まる(a)。放射光パルスには個々の電子が放射した多数の短い波(波束)が含まれている (b)。本研究で用いたアンジュレータでは10回だけ振動する長さ数フェムト秒の波束が発生 する。二台のアンジュレータを並べると波束のペアを生成できる(c)。

#### **2.** 研究の成果

共同研究チームは、分子科学研究所の放射光施設 UVSOR に設置された二台のアンジュ レータを用いて、実験を行いました。二台のアンジュレータの間には電子に回り道をさせる 特殊な装置(位相子電磁石)が組み込まれており、電子が放射する波束のペアの時間間隔を 数アト秒の精度で調整することができます。

放射光パルスの中に埋もれている波束の時間構造を調べるために、共同研究チームはまず マッハツェンダー型と呼ばれる干渉計(注4)を新しく製作しました。この装置に導かれた アンジュレータ光はビームスプリッターと呼ばれる光学素子を用いて2つに分けられます。 異なる2つの経路を通過した後、光は2番目のビームスプリッターで合流します。このとき 片方の経路の長さを少しずつ変えると、2つの光の波が少しずつ時間的にずれて重なり合う ことで、時間差に応じて強め合ったり弱め合ったりします。1台のアンジュレータからの光 をそのようにして観測すると、図2に示すような計測結果が得られます。これは干渉波形と 呼ばれるもので、横軸は2つに分けられた光の時間差、縦軸は光の強度です。アンジュレー タからの放射がちょうど10個の山谷からなる波束であるという理論的予想と一致する結 果が得られました。同様にして、2台のアンジュレータからの光を観測すると、おもしろい ことに干渉波形が3つ観測できました(図3)。両側の2つは、2つ続けてやってくる波束 の前の部分と後ろの部分が相互に干渉しているものです。さらに、2つの波束の時間差を変 えるとこれら干渉模様の間の時間差も変化する様子が観測できました。これらの結果は、1 0個の山谷からなる波束が2つ続けてやって来ていること、また、その波束の間の時間差を 精密に制御できていることを示していると考えられます。



図 2. マッハツェンダー干渉計で観測した1台のアンジュレータからの放射の自己干渉波形(a) は計算値(b)とよく一致した。(c)で示すように10個の山谷からなる波束同士を時間をずらし ながら干渉させると、(a)、(b)のような干渉波形が得られる。



図3. 直列に配置された2台のアンジュレータからの放射の自己干渉波形。続けてやってくる2 つの波束のそれぞれが自身と干渉するのに加え、前の波束と後ろの波束が相互に干渉すること で、3つの干渉波形が現れる。波束の間の時間差を変えるのに応じて、3つの干渉波形の間隔が 変化している様子がわかる。電流値(0-17.3A)は位相子電磁石の値。電流値が大きいほど磁 場が強くなり、二台のアンジュレータの間の電子の回り道が長くなる。

マッハツェンダー干渉計を用いた実験で波速の時間構造を紫外線の波長域で確かめるこ とができました。放射光が得意とする極端紫外(注5)やX線の波長域でも同様の波束が生 成されるはずです。ただし紫外線より波長が短い極端紫外光やX線をマッハツェンダー干 渉計で調べることは非常に困難です。そのため次の実験では、極端紫外の波長域で二台のア ンジュレータが発する波束の時間間隔を原子の量子状態の干渉を利用して精密に測定しま した。

極端紫外光を原子に照射すると、原子の中の電子を外側の軌道へ励起することができます。 二つの波束を使って原子を励起すると、一つ目の波束で励起された状態と二つ目の波束で励 起された状態が重ね合わされ、波束の時間差に応じた量子的な干渉が生じます。ヘリウム原 子を用いて実験を行ったところ、図4の結果が得られました。実験では二つのアンジュレー タの間の電子の回り道を位相子電磁石を使って徐々に長くしながら、電子が5p軌道(注6) へ励起されたヘリウム原子が発する蛍光を検出しました。すると蛍光強度が周期的に変化す る様子が観測されました。この蛍光強度の変化は、二つの波束の時間間隔が徐々に長くなる ときに、強め合いと弱め合いの干渉が交互に起こることを示しています。そして強度変化の 周期は時間に換算するとヘリウム原子の中の電子を5p軌道へ励起するために必要な光の周 波数に対応することがわかっています。この周波数は過去の研究で精度良く調べられていま すので、その時間周期を使えば、位相子電磁石で調整した二つの波束の時間差を精度よく決 定することが出来ます。この手法で求めた二つの波束の時間差をマッハツェンダー干渉計に よる実験結果と比較したところ良い一致が得られました(図5)。すなわち、アンジュレー タを使えば数アト秒という高い時間精度で波形が制御された波束を、様々な波長域で発生で きることが示されました。



**図 4.** 二つのアンジュレータの間の電子の回り道の長さを変えながら測定したヘリウム原子の蛍 光強度。二つの波束による量子状態の干渉効果のため172アト秒周期の変動が観測される。



図 5. 二つの手法で測定した波束の時間差の比較。赤丸が紫外線波長域におけるマッハツェン ダー干渉計による測定結果、緑線が極端紫外の波長域におけるヘリウム原子の干渉を利用した 測定結果を示す。

#### 3. 今後の展開・この研究の社会的意義

レーザー光源に比べて時間特性が劣ると思われていた放射光源ですが、本研究によって、 放射光が優れた時間特性を持っていること、またその時間特性を精密に制御できることが示 されました。磁石を用いて電子の運動を制御することで、電子の放射する光の時間構造を制 御する本技術は、長時間の安定性や再現性が求められる高精度な実験に適しています。また、 波長の短い X 線への拡張や更なる高速化も可能です。将来的にはアト秒スケールで進行す る超高速反応を放射光で観察したり制御できるようになるかもしれません。今後、放射光に よる超高速反応の研究は、高速応答デバイスや機能材料の開発、生体分子の放射線損傷の解 明にも役立つものと期待されます。

#### 4. 用語解説

注1)アト秒、フェムト秒、ピコ秒

1秒の1/1000がミリ秒、さらにその1/1000がマイクロ秒、そのあと1/1000に短くなるご とに、ナノ秒、ピコ秒、フェムト秒、アト秒と続く。可視光線や紫外線の光の波長(光の波 の山から山までの距離)は1ミクロンの数分の1であるが、この距離を光が進む時間がおよ そ1フェムト秒である。アト秒で光の波の構造を制御するということは、光の波長よりも細 かい精度でその形を制御するということである。

注2) 放射光

ほぼ光速(約30万km/秒)の高エネルギー電子が磁場で進行方向を曲げられる際に放出する電磁波。

注3) アンジュレータ

放射光発生装置の一種。周期的に極性が変わる磁石を用いて電子に蛇行運動をさせることで 指向性の高い、準単色の放射光を発生することが出来る。

注4) マッハツェンダー型干渉計

ビームスプリッターと呼ばれる光学素子を用いて光を2つに分け、別な経路を通した後、も う一つのビームスプリッターで合流させて互いに干渉する様子を観測する装置。2つの経路 の長さを変えることで時間差を付けながら2つの光を干渉させることができる。

注5) 極端紫外領域

可視光とX線の中間の波長領域。波長は数10 ナノメートル(1ナノメートルは10億分の1メートル)。

注6) 5p 軌道

原子内の電子は殻に分かれて配置されている。5p軌道は内側から5番目の殻に含まれる。

## 5. 論文情報

掲載誌:Scientific Reports

- 論文タイトル: "Double-pulsed wave packets in spontaneous radiation from a tandem undulator" (「タンデムアンジュレータからの自発放射に含まれるダブル波束」)
- 著者: T. Kaneyasu, M. Hosaka, A. Mano, Y. Takashima, M. Fujimoto, E. Salehi, H. Iwayama, Y. Hikosaka & M. Katoh

掲載日:2022年6月11日(オンライン公開)

DOI : https://doi.org/10.1038/s41598-022-13684-2

# 6. 研究グループ

九州シンクロトロン光研究センター 名古屋大学 富山大学 広島大学 分子科学研究所(愛知県岡崎市)

# 7. 研究サポート

科研費 20H00164, 21K03430, 22H02044 自然科学研究機構新分野創成センター先端光科学研究分野プロジェクト 01211906

## 8. 研究に関するお問い合わせ先

金安 達夫 (かねやす たつお) 九州シンクロトロン光研究センター 副主任研究員 TEL:0942-83-5017 FAX:0942-83-5196 E-mail:kaneyasu@saga-ls.jp

高嶋 圭史(たかしま よしふみ)
名古屋大学シンクロトロン光研究センター 教授
TEL:052-747-6562 FAX:052-747-6563
E-mail:takasima@nusr.nagoya-u.ac.jp

加藤 政博(かとう まさひろ) 広島大学 放射光科学研究センター 教授 (分子科学研究所 特任教授) TEL:082-424-6293 FAX:082-424-6294 E-mail:mkatoh@hiroshima-u.ac.jp 彦坂 泰正(ひこさか やすまさ) 富山大学 教養教育院 教授 TEL:076-434-7456 FAX:076-434-7456 E-mail:hikosaka@las.u-toyama.ac.jp

# 9. 報道担当

自然科学研究機構 分子科学研究所 研究力強化戦略室 広報担当 TEL:0564-55-7209 FAX:0564-55-7374 E-mail:press@ims.ac.jp

東海国立大学機構 名古屋大学広報室 TEL:052-789-3058 FAX:052-789-2019 E-mail:nu\_research@adm.nagoya-u.ac.jp

富山大学 総務部総務課広報・基金室TEL:076-445-6028 FAX:076-445-6063E-mail:kouhou@u-toyama.ac.jp

広島大学 広報室 TEL:082-424-4383 FAX:082-424-6040 E-mail:koho@office.hiroshima-u.ac.jp