For entrants in AY 2023

Appended Form 1
Specifications for Major Program
Name of School（Program）〔School of Engineering Cluster 3 （Applied Chemistry，Biotechnology and Chemical Engineering）］

Program name（Japanese）	生物
（English	Prog
1．Academic Degree to be Acquired	
Bachelor＇s degree in engineering	

2．Overview

In order to contribute to the advancement of the key industries that will play a role in the next generation，such as medicine，food，and environment，this program aims at developing engineers and researchers that possess professional expertise and technical skills in the elucidation and utilization of biological molecules and living organisms．Therefore，this program establishes a curriculum through which students can organically and systematically acquire comprehensive knowledge of the basic mechanisms of life and technical skills in the most－ advanced fields，such as gene，protein，carbohydrate，and lipid engineering；microorganism，animal，and plant engineering；biochemical engineering；bioinformatics engineering；environmental biotechnology；immunology；and brewing technology．Students can also acquire the different abilities required for researchers and engineers，such as the ability to think logically，the ability to plan and conduct experiments，the ability to explain data analysis，the ability to discover and resolve the problems，and the ability to deal with practical issues．This program awards the Type－1 High School Teaching License（Industry）to students who have taken the required courses．Graduates gain employment and work actively for corporations in the pharmaceutical，food，brewing，environmental，and chemical industries，or in public research institutions．Graduates can go to graduate school（Graduate School of Integrated Sciences for Life）to obtain a higher degree of education and undertake research．

3．Academic Awards Policy（Policy for awarding degrees and goal of the program）

The Program of Biotechnology nurtures professionals that have acquired the basic knowledge，skills，and attitudes needed to work as bioengineering researchers and engineers and，further，to embrace opportunities for creativity in scientific thought．

Therefore，this program offers education aimed at cultivating a broad range of general knowledge，a global perspective to seek peace，a general sense of judgment，and a well－rounded character．The program awards a bachelor＇s degree in engineering to students who have completed sufficient liberal arts education and specialized education to achieve the following goals from（A）to（E），as well as the number of credits necessary to meet the standard of the course．
（A）The ability to understand the relationship between people，society，nature，and engineering，and to demonstrate multifaceted and logical thinking skills
（B）The ability to understand basic natural science
（C）The ability to acquire basic knowledge of biotechnology and biological science，and to expand it widely to applied technology
（D）The ability to come up with conceptual ideas and to implement ideas，as well as the ability to transmit learning and research results
（E）The ability to adapt to the highly sophisticated information society with high level communication skills

4．Curriculum Policy（Policy for Preparing and Implementing the Curriculum）

To achieve the goals from (A) to (E) set by this program, the Program of Biotechnology organizes and implements a curriculum in which liberal arts education and specialized education are closely connected. After acquiring basic academic abilities and knowledge in liberal arts education subjects, students must learn the specialized fields of engineering and biotechnology. Students mainly study these subjects until the first and second terms of the second year, and then after the third and fourth terms of the second year, when students are assigned to the program, they mainly study specialized subjects. Learning specialized basic subjects before being assigned to the program is effective in raising awareness of students' field of specialization, and in developing incentives for learning. Furthermore, receiving lectures by the faculties in charge of programs other than the Program of Biotechnology (Program of Chemical Engineering,Program of Applied Chemistry) provides students with knowledge about surrounding fields.

In the curriculum described above, teaching and learning will be implemented by utilizing active learning and online classes, depending on the delivery methods of the program, such as lectures and seminars.

In addition to strict grading using the standards clearly outlined in the syllabus, learning outcomes are evaluated based on the degree to which the goals set by the educational program are achieved.

Knowledge and Abilities

- Cultivation of understanding about the relationship between people, society, nature, and engineering, as well as an ethical outlook, which forms the basic knowledge that researchers and engineers are required to possess (Goal A). This is obtained through mastery of liberal arts education subjects, "Introductory Seminar for First-Year Students", "Peace Science Courses" ,"Introduction to University Education", "Information Subjects" and specialized basic subjects, " Introduction to Applied Chemistry, Chemical Engineering and Biotechnology", and " Introduction to Fundamental Industry" to be offered at the first year.
- Basic knowledge of mathematical theory, physics theory, and experimental methods required of researchers and engineers in natural science (Goal B). This is obtained through mastery of mathematical fundamental subjects such as "Calculus" and "Linear Algebra" and fundamental physics subjects such as "General Mechanics I•II" and "Experimental Methods and Laboratory Work in Physics" to be offered in the first year.
- General understanding of biotechnology, life science, chemistry, and the basic knowledge required of experts in biotechnology (Goal B, C). This is obtained through mastery of specialized basic subjects, "Basic Life Science", "Basic Organic Chemistry l", "Basic Inorganic Chemistry" and "Basic Environmental Sciences" to be offered in the first year.
- Mathematical method required of experts in biotechnology (Goal B). This is obtained through mastery of specialized basic subjects, "Applied Mathematics I•II", and "Probability and Statistics" to be offered from the third and fourth term of the first year through the second year.
- The expertise and grasp of concepts required of researchers and engineers in biotechnology (Goal C). This is obtained through mastery of the specialized subjects of the Program of Biotechnology such as "Microbiology I• II", "Molecular Biology I • II • III", "Enzyme Chemistry", and "Biochemical Engineering" to be offered from the third and the fourth term of the second year through the fourth year.

O Abilities and Skills

- The ability to conduct experiments to resolve issues and problems that arise, and the ability to examine and resolve problems using experimental outcomes and related materials (Goal C, D, E). This is obtained through mastery of experimental subjects closely related to biotechnology, such as "Experimental Methods and Laboratory Work in Biology", "Basic Experiments in Chemistry", and "Training of Biotechnology I • II"
- The ability to make action plans on one's own initiative in response to practical issues and challenges, to make adjustments, and to resolve problems and challenges by using basic and specialized knowledge and methods (Goal C, D, E). These are obtained through mastery of "Graduation Thesis" to be offered in the fourth year.

O Overall Abilities

- The ability to organize and analyze information from the literature to discover and resolve practical problems and challenges, and the ability to logically make research plans and carry them out (Goal C, D, E). These are obtained through mastery of "Group Discussion of Current Biotechnology Topics" to be offered in the third year and "Graduation Thesis" to be offered in the fourth year.
- The ability to organize research results and write logically, including about the significance and validity of the obtained outcome, and to prepare presentation data, present it, and discuss it verbally in an easy-to-understand manner (Goal E). These are obtained through mastery of "Group Discussion of Current Biotechnology Topics" to be offered in the third year, and "Graduation Thesis" to be offered in the fourth year.
- Teamwork ability, leadership ability, and communication ability in group work (Goal E). These are obtained through mastery of "Basic Experiments in Chemistry", and "Training of Biotechnology I•II" to be offered from the third and fourth term of the second year though the third year, and through "Group Discussion of Current Biotechnology Topics" to be offered in the third year.
- The ability to read, write, and converse in the English language necessary for conducting research (Goal E). This is obtained through mastery of "Communication Basic •I•II" in the liberal arts education subjects, "Technical English" to be offered in the third and the fourth terms of the second year, and "Graduation Thesis" to be offered in the fourth year.

5. Program Timing and Acceptance Conditions

- When to start the program:

The second semester of the second year
Cluster 3 offers distinctive education that organically integrates fields related to chemistry, biotechnology, and processes. Specifically, it aims at developing professionals that possess a wide range of basic knowledge about the development of new functional substances and materials, the biotechnology of plants, animals, and microbes, the design and control of chemical process, environmental preservation and bioremediation, and the development of resources and energy, as well as having a high level of expertise and technical skill in a harmonious way. To achieve this aim, in addition to the common subjects and a wide range of specialized basic education, three programs are prepared that provide specialized education about chemistry, biotechnology and processes. These are the Program of Applied Chemistry, the Program of Biotechnology, and the Program of Chemical Engineering. Registration to these three programs is to be made in the second semester of the second year, so that students are able to choose the suitable specialized field or program while acquiring a wide range of specialized basic knowledge.

- Requirements of Acquired Credits

In order to be assigned to each program, students must acquire 16 or more credits out of a total of 18 credits in compulsory specialized basic subjects (excluding Basic Chemical Experiment and Technical English) and must acquire an overall total of 60 or more credits (including in liberal arts education subjects).

- Program Quota

An upper limit is set for acceptance of students. Assignment to the Program of Applied Chemistry, the Program of Biotechnology and the Program of Chemical Engineering is decided after taking into account the requests of students and their academic results.

6. Qualifications to be Acquired

- Type-1 High School Teaching License (Industry) (By mastering "Vocational Guidance", the prescribed "liberal arts education subjects" and "specialized education subjects", students can obtain the Type-1 High School Teaching License (Industry) upon graduation.)

Details are described in the student handbook and guidance materials.

7. Class Subjects and Course Content

* For class subjects, see the subject list in the attached Tables 1 and 2.
(Subject list to be attached.)

8. Academic Achievements

At the end of each semester, evaluation criteria are applied to each evaluation item and indicate academic achievement by indicating the attainment level. Students' grade calculations for each subject, from admission to the university until the current semester, is given as one of the three levels: "Excellent," "Very Good," and "Good," based on evaluation criteria calculated by adding the weighted values to the numerically-converted values of their academic achievements $(S=4, A=3, B=2$, and $C=1)$ in each subject being evaluated.

Result Evaluation	Conversion
S $\quad(90$ points or more $)$	4
A $\quad(80 \sim 89$ points $)$	3
B $\quad(70 \sim 79$ points $)$	2
C $\quad(60 \sim 69$ points $)$	1

Academic Results	Standard
Excellent	$3.00 \sim 4.00$
Very Good	$2.00 \sim 2.99$
Good	$1.00 \sim 1.99$

* See the relationship between evaluation items and evaluation criteria in the attached sheet 2.
* See the relationship between evaluation items and class subjects in the attached sheet 3.
* See the curriculum map in the attached sheet 4.

9. Graduation Thesis (Graduation Research) (Positioning, when and how it is assigned, etc.)

Students receive practical guidance through graduation work in a research laboratory where world-leading research is conducted in various fields of biotechnology, and acquire a fundamental capability as bioengineering researchers and engineers.

Students are to be assigned at the start of the fourth year. As requirements for undertaking a graduation thesis, students must acquire 8 credits in foreign languages and must have completed all experiment subjects and practical subjects to be taken. Furthermore, students must acquire a total of 115 or more credits (including liberal arts education subjects) including a total of 69 or more credits in specialized basic subjects and specialized subjects. (Refer to the attached Table 1 and Table 2)
10. Responsibility System
(1) PDCA Responsibility System ("Plan," "Do," "Check," and "Act")

The Educational Evaluation Committee (in charge of examining and handling the faculties' evaluation of the curriculum and the content of lectures), The Student Evaluation Committee (in charge of examining and handling evaluation of the students, such as attainment levels against goals), and the Educational Improvement Committee (in charge of planning and handling curricula based on self-assessment and questionnaires) are set up within the committee for this program (see the attached sheet 54). Under the leadership and responsibility of the head of the program, all the teachers of this program work together in cooperation with each other to carry out the system.
(2) Program Assessment

- Criteria for program assessment:

Evaluation outcome of attainment levels against goals
Requests from students and demands of society
Evaluation outcome of self-assessment by faculties

- Method of assessment (connection with class evaluation to be described)

In addition to attainment levels evaluation summary sheet completed by the Education and Student Evaluation Committee, questionnaires by students and graduates, and self-assessment evaluation by faculties, an external
evaluation will be conducted.

- Procedure on giving feedback to students

In the case of problems with class subjects, faculties deal with these problems after taking into account the learning conditions of each individual student. The tutors or the Educational Improvement Committee members handle matters comprehensively, which is reflected in the improvement of the program through discussions in the committee.

Cluster 3 （Applied Chemistry，Biotechnology and Chemical Engineering）

© Required subject（period of registration specified）
O Compulsory elective subject（any of these subjects shall be registerec
\triangle Free elective subject（any of these subjects shall be registered）

Subject Type					$\begin{array}{\|c\|} \hline \text { Required } \\ \text { No. of } \\ \text { credits } \end{array}$	Class subjects																，			
					1st grade				2nd grade				3rd grade				4 th grade								
					Spring Fall				Spring		Fall		Spring		Fall		Spring		Fall						
					1T				2T	3T	4T	1T	2 T	3T	4T	1T	2 T	3 T	4 T	1T	2 T	3T	4T		
Peace Science Courses						2		2	Compulsory elective		\bigcirc														
		Introduction to University Education				2	Introduction to University Education	2	Required	©															
		Introductory Seminar for First－Year Students				2	Introductory Seminar for First－ Year Students	2	Required	©															
		Advanced Seminar			0		1	Free elective			\triangle	\triangle													
		Area Courses			4	Courses in Arts and Humanities／Social Sc	2	Compulsory elective	\bigcirc		\bigcirc														
					4	Courses in Natural Sciences	2			\bigcirc		\bigcirc													
				Basic English Usage	2	Basic English Usage I	1	Required	（0）	（）															
						Basic English Usage II	1				（ ）	（ ）													
				Communication		Communication IA	1	Required	（0）	（）															
						Communication IB	1		（ $)$	（）															
						Communication IIA	1	Required			（ $)$	（）													
$\frac{7}{7}$						Communication IIB	1				（0）	（）													
In			Initial Foreign Languages （Select one language from German，French，Spanish， Russian，Chinese，Korean and Arabic）			1 subjects from Basic language I	1	Compulsor y elective	\bigcirc																
$\underset{\sim}{\underset{T}{x}}$						1 subjects from Basic language II	1			\bigcirc															
$\stackrel{y y}{\stackrel{y}{y}}$		Info Scie	mation nce Cou	and Data rses	2	Introduction to Information and Data Sciencies	2	Required		©															
		Heal	th and	Sports Courses	2		1or2	Compulsor y elective	\bigcirc	\bigcirc	\bigcirc	\bigcirc													
	Basic Subjects				15	Calculus I	2	Required	（ $)$																
					Calculus II	2				（）															
					Linear Algebra I	2			（）																
					Linear Algebra II	2					（0）														
					General Mechanics I	2			（）																
					General Mechanics II	2					（）														
					Experimental Methods and Laboratory Work in Physics I	1						（													
					Experimental Methods and Laboratorv Work in Physics II	1							©												
					Seminar in Basic Mathematics I	1			（ $)$																
					1	Seminar in Basic Mathematics II	1	Compulsor y elective				\bigcirc													
					Experımental Methods and Laboratory Work in Biology I（Note 5）	1				\bigcirc															
					Experimental Methods and Laboratory Work in Biology II	1					\bigcirc														
					Basic Electromagnetism	2					\bigcirc														
	Free elective subjects					2	From all Subject Type		$\begin{gathered} \text { Free } \\ \text { elective } \end{gathered}$	\triangle															
	No．of credits required for graduation					44																			

Note 1：When students fail to acquire the credit during the term or semester marked with $\bigcirc, \bigcirc, \triangle$ in the boxes for the year in which the course is taken，they can take the course in subsequent terms or semesters．Depending on class subject，courses may be offered in semesters or terms different from those scheduled．Please be sure to check the time schedule for Liberal Arts Education subjects to be issued every school year．
Note 2：The credit obtained by mastery of＂English－speaking Countries Field Research＂or self－directed study of＂Online Seminar in English A•B＂ cannot be counted towards the credit necessary for graduation．The credit obtained by Overseas Language Training can be recognized as Communication I or II if application is made in advance．For more details，please refer to the article on English in Liberal Arts Education in
Note 3：We have a recognition of credit system for foreign language proficiency tests．For more details，please refer to the article on Foreign Language in Liberal Arts Education in the student handbook．
Note 4：Students must take both「Experimental Methods and Laboratory WorkI in Physics I（1credit）」and「Experimental Methods and Laboratory WorkII in Physics II（1credit）\rfloor ．
Note 5：Experimental Methods and Laboratory Work in Biology I should basically be taken together with Experimental Methods and Laboratory Work in Biology II．Person who took Methods and Laboratory Work in Biology I can take Experimental Methods and Laboratory Work in Biology II．

Cluster 3 Specialized Basic Subjects

©Required

Class Subjects						Class Hours/ Week																		note
						1st grade				2nd grade					3rd grade					4th grade				
						Spring		Fall		Spring		Fall			Spring		Fall			Spring		Fall		
						1T	2 T	3 T	4T	1T	2 T	3 T		4 T	1T	2	3		T	1T	2 T	3T	4T	
Applied Mathematics I	2	\bigcirc	\bigcirc	(0)	\bigcirc			4																
Applied Mathematics II	2	\bigcirc	\bigcirc		©					4														
Applied Mathematics III	2															4								
Basic Engineering Computer Programming	2	©	O		()					4														
Probability and Statistics	2														4									
Technical English	1	©	O	©	()									4										
Basic Environmental Sciences	2							4																
Chemical Stoichiometry	2	©	\bigcirc		-						4													
Basic Organic Chemistry I	2	\bigcirc	\bigcirc	©	O			4																
Basic Organic Chemistry II	2								4															
Physical Chemistry I	2	\bigcirc	\bigcirc	©	-						4													
Biochemistry I	2	©	\bigcirc	O	-						4													
Basic Experiments in Chemistry	4	\bigcirc	\bigcirc	©	-							12		12										
Basic Inorganic Chemistry	2	©	\bigcirc	©	\bigcirc			4																
Analytical Chemistry	2	\bigcirc	\bigcirc	©	()					4														
Basic life science	2								4															
为	2										4													
Introduction to Fundamental Industry	2										4													

Cluster 3 Specialized Subjects (Program of Biotechnology)

©Required subjects
OCompulsory Elective subjects

Class Subjects			Class Hours/ Week																Note
			1st grade				2nd grade				3rd grade				4th grade				
			Spring		Fall														
			1T	2T	3T	4 T	1T	2 T	3T	4T	1T	2 T	3T	4T	1T	2 T	3T	4T	
Training of Biotechnology I	4	()									12	12							
Experiments on Biotechnology II	4	©											12	12					
MicrobiologyI	2	()								4									
MicrobiologyII	2	©										4							
Molecular biology I	2	©								4									
Molecular biology II	2	()										4							
Biochemistry II	2	()							4										
BiochemistryIII	2	O									4								
Enzyme Chemistry	2	\bigcirc							4										
Bioorganic Chemistry	2	\bigcirc									4								
Fermentation Technology	2	©									4								
Biochemical Engineering	2	()										4							
Glycotechnology \& Immunotechnology	2	\bigcirc												4					
Molecular BiologyIII	2	\bigcirc												4					
Genetic and protein engineering	2	\bigcirc												4					
Molecular Bioinformatics	2	\bigcirc											4						
Biotechnology	2	\bigcirc											4						
Croup Disessioso C Current E Biocechmoges Topics	2	()											2	2					
FoodProcess Engineering I	1											2							
Food Process Engineering II	1													2					
FermentationProcess Engineering I	1														1	1			
Fermentation process engineeringII	2											4							
Fermentation Process Engineering III	1													2					
Physical Chemistry II	2								4										
Chemical Kinetics	2	\bigcirc										4							
Organic Structural Analysis	2									4									
Advanced Organic Chemistry IV	2												4						
Chemical Engineering Exercise I	2	\bigcirc							4	4									
Chemical Enginering Fundamentals	2	\bigcirc							2	2									
Green Technology	2												4						
Recycling engineering	2													4					
Graduation Thesis	5	©																	

Sheet 2

Academic Achievements in Biotechnology Program
 The Relationship between Evaluation Items and Evaluation Criteria

Academic Achievements			Evaluation Criteria		
Evaluation Items			Excellent	Very Good	Good
	(1)	Understanding of relations among human, society, nature, and engineering. (Target A)	Being able to fully understand diversity of sense of values and ways of thinking in areas other than engineering and able to take various consideration.	Being able to understand the relations and differences between engineering and other areas and being to take consideration to the standard level.	Being able to well understand the relations and differences between engineering areas and other areas and take various consideration to the standard level.
	(2)	Understanding of basic natural science (target B)	Being able to fully understand mathematics and physics which are a base of engineering.	Being able to understand mathematics and physics in the standard level.	Being able to understand mathematics and physics well.
	(3)	Acquisition of basic and advanced knowledge relating to biotechnology and life science. (Target/Lecture class)	Being able to understand chemistry, applied mathematics, process engineering, basic biological science, and applied biological science, which are essential to biotechnologists.	Being able to understand chemistry, applied mathematics, process engineering, basic biological science and applied biological science to the standard level.	Being able to understand basic and advanced discipline described on the left well.
	(1)	Acquisition of basic and advanced skills relating to biotechnology and life science. (Target/ Research class)	Being able to display abilities required for biotechnological engineers: logical thinning ability, ability to conduct experiment along with a plan, ability to analyze data and explanation.	Being able to demonstrate standard level abilities to think logically, to plan and carry out research and to analyze data.	Being able to well demonstrate the ability described on the left.
	(1)	Cultivation of ability creating concept and solving problesms (achievement target D)	Being able to display abilities, required for biotechnologists, such as to make plan and carry out research, to demonstrate research outcome, to discuss, and to solve problems.	To be able to demonstrate standard level abilities to make plan and carry out research, to show outcomes and to solve problems.	Being able to demonstrate the ability described on the left.
$\begin{gathered} \text { ت/ } \\ \stackrel{y}{0} \\ 0 \end{gathered}$	(2)	Cultivation of communication skills (achievement target E)	Being able to show logical writing abilities, information transmission abilities to domestic and overseas, debating and information utilization.	To be able to demonstrate standard level abilities to make plan and carry out research, to show outcomes and to solve problems.	Being able to demonstrate the ability described on the left.

Placement of the Liberal Arts Education in the Major Program
Liberal Arts Education in this program assumes the role of establishing the academic foundation on which the specialized education will be built. It respects a voluntary, self-reliant attitude and cultivates scientific thinking based on information gathering abilities, analytical abilities, and critical thinking abilities. It establishes perspectives that make it possible to provide insight on the inner nature of things and their background from a wide broad viewpoint, and enhances linguistic abilities to the level appropriate for living as a global citizen. It also strengthens interest in peace, and integrates a broad range of knowledge into a body of knowledge that will be truly useful in solving problems. It cultivates the ability to explore and promote cross-disciplinary /comprehensive research that goes beyond the established frameworks of biotechnology.

Sheet3
Relationships between the evaluation items and class subjects

Subject type	Class subjects	credits	$\begin{gathered} \text { Type of } \\ \text { cof } \\ \text { course } \\ \text { registr } \\ \text { ation } \\ \text { 区分 } \end{gathered}$	Period	Evaluation items												Total weighted values of evaluatio n items in the subject
					Knowledge and Understanding						$\begin{array}{\|c\|} \hline \text { Abilities and Skills } \\ \hline(1) \\ \hline \end{array}$		Comprehensive Abilities				
					(1)		(2)		(3)				(1)		((2)		
					$\begin{array}{l}\text { Weighted } \\ \text { values of } \\ \text { evaluation } \\ \text { items in } \\ \text { ithe subject }\end{array}$	$\begin{array}{\|l\|} \begin{array}{l} \text { Weightsed } \\ \text { values of } \\ \text { evaluation } \\ \text { items } \end{array} \\ \hline \end{array}$			Weighted values of evaluation items in the subject	$\left\lvert\, \begin{aligned} & \text { Weightsed } \\ & \text { velueseof } \\ & \text { evaluation } \\ & \text { items } \end{aligned}\right.$	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	$\begin{aligned} & \begin{array}{l} \text { Weighted } \\ \text { values of } \\ \text { evaluation } \\ \text { iems in } \\ \text { the subject } \end{array} \\ & \hline \end{aligned}$	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	
Liberal Atst Edeation		2	Required	1 Isemsester	40	1							40	1	20	1	100
Liberal Atst Edeation	${ }^{\text {Introuctuction to University Eduation }}$	2	Required	1 Lemsees	100	1											100
Liberal Atst Edeatation	Peace Science Courses	2	Elective	meseter	100	1											100
Liberal Atst Edacation	Area Courses	8	Elective	ster	100	1											100
Liberal Atrs Eduation	Basic English Usage I	1	Required	120											100	1	100
Liberal Atrs Eduation	Basic English Usage II	1	Required	1 Iemeseter											100	1	100
Liberal Atst Edecation	CommunicationI A	1	Required	1semseter											100	1	100
Liberal Atst Edeation	Communication IB	1	Required	sester											100	1	100
Liberal Atrs Education	Communication IIA	1	Required	2 ememestar											100	1	100
Liberal Atst Education	Communication IIB	1	Required	2 2emsester											100	1	100
Liberal Atst Edeation	Basic language I	1	Required	1semsester	100	1											100
Liberal Atst Edacation	Basic language II	1	Required	1	100	1											100
Liberal Atrs Education	ormation and Datas Stienece Curres	2	Required	1semseter											100	1	100
Liberal Atrs Education	Sormation and Datas Steience Coures	2	Required	1 semsester	100	1											100
Liberal A Ars Edacation	CalculusI	2	Required	Isemses			100	1									100
Liberal Atst Education	CalculusII	2	Required	meses			100	1									100
Liberal Atrs Education	Linear AlgebraI	2	Required	${ }^{\text {Isemseserer }}$			100	1									100
Liberal Atss Education	Linear AlgebraII	2	Required	sester			100	1									100
Liberal Atrs Education	General Mechanics I	2	Required	1 semsester			100	1									100
Liberal Arst Education	General Mechanics II	2	Required	2 2emesester			100	1									100
Liberal Atst Edecation	Smomamman	2	Required	3 3emesester			50	1			30	1	20	1			100
Liberal Atst Edacation	Seminar in Basic Mathematics 1	1	Elective	1 1semsester			100	1									100
Liberal Atst Education	Seminar in Basic Mathematics II	1	Elective	2			100	1									100
Liberal Atrs Education		2	Elective	2 memsest							80	1	20	1			100
Liberal Atst Edacation	Basic Electromagnetism	2	Elective	mesester			100	1									100
Specialized Education	Applied Mathematics I	2	Required	2 2emseste					100	1							100
Specialized Education	Applied Mathematics II	2	Required	3 3emesester					100	1							100
Specialized Education	Applied Mathematics III	2	Elective	5					100	1							100
Specialized Education	Probability and Statistics	2	Elective	Ssemsest					100	1							100
Specialized Education	Technical English	1	Required	msest					20	1					80	1	100
Specialized Education		2	Required	3					100	1							100
Speciailized Education	Basic Environmental Sciences	2	Elective	2	60	1			40	1							100
Specialized Education	Chemical Stoichiometry	2	Required	3emsest					100	1							100
Specialized Education	Basic Organic Chemistry I	2	Required	2emeseter					100	1							100
Specialized Education	Basic Organic Chemistry II	2	Elective	2 2emester					100	1							100
Specialized Education	Physical Chemistry I	2	Required	3eemester					100	1							100
Specialized Education	Biochemistry I	2	Required	3emeseter					100	1							100
Speciaized Education	Basic Experiments in Chemistry	4	Required	tsemsest							80	1	20	1			100
Specialized Education	Basic Inorganic Chemistry	2	Required	2					100	1							100
Specialized Education	Analytical Chemistry	2	Required	3emester					100	1							100
Specialized Education	Basic life science	2	Elective	2emeseter	40	1			60	1							100
Specialized Education		2	Elective	3emsester	40	1			60	1							100
Specialized Education	Introduction to Fimdamental Industry	2	Elective	3 3emsester	40	1			60	1							100
Specialized Education	Training of Biotechnology I	4	Required	Ssemeseter							60	1	20	1	20	1	100
Specialized Education	Experiments on Biotechnology II	4	Required	6							60	1	20	1	20	1	100
Specialized Education	MicrobiologyI	2	Required	temsest					100	1							100
Specialized Education	MicrobiologyII	2	Required	Ssemeseter					100	1							100
Specialized Education	Molecular biology I	2	Required	4emeseter					100	1							100
Specialized Education	Molecular biology II	2	Required	Ssemsester					100	1							100
Specialized Education	Biochemistry II	2	Required	tsem					100	1							100
Specialized Education	BiochemistryIII	2	Required	5					100	1							100
Specialized Education	Enzyme Chemistry	2	Elective	tsemsester					100	1							100
Specialized Education	Bioorganic Chemistry	2	Elective	Semestes					100	1							100
Specialized Education	Fermentation Technology	2	Required	Ssemsester					100	1							100
Specialized Education	Biochemical Engineering	2	Required	Ssemsester					100	1							100

Subject type	Class subjects	credits	$\left\lvert\, \begin{gathered} \text { Type of } \\ \text { course } \\ \text { registr } \\ \text { ation } \\ \text { 区分 } \end{gathered}\right.$	Period	Evaluation items												Total weighted values of evaluatio n items in the subject
					Knowledge and Understanding						Abilities and Skills (1)		Comprehensive Abilities				
					(1)		(2)		(3)				(1)		(2)		
					Weighted values of evaluation items in the subject		Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	
Specialized Education	Glycotechnology \& Immunotechnology	2	Elective	6semsester					100	1							100
Specialized Education	Molecular BiologyIII	2	Elective	6semsester					100	1							100
Specialized Education	Genetic and protein engineering	2	Elective	6semsester					100	1							100
Specialized Education	Molecular Bioinformatics	2	Elective	6semsester					100	1							100
Specialized Education	Biotechnology	2	Elective	6semsester					100	1							100
Specialized Education		2	Required	6semsester	40	1							40	1	20	1	100
Specialized Education	FoodProcess Engineering I	1	Elective	5semsester	20	1			80	1							100
Specialized Education	Food Process Engineering II	1	Elective	6semsester	20	1			80	1							100
Specialized Education	FermentationProcess Engineering I	1	Elective	7 Femsester	20	1			80	1							100
Specialized Education	Fermentation process engineeringII	2	Elective	5semsester	20	1			80	1							100
Specialized Education	Fermentation Process Engineering III	1	Elective	6semsester	20	1			80	1							100
Specialized Education	Physical Chemistry II	2	Elective	4semsester					100	1							100
Specialized Education	Chemical Kinetics	2	Elective	5semsester					100	1							100
Specialized Education	Organic Structural Analysis	2	Elective	4semsester					100	1							100
Specialized Education	Advanced Organic Chemistry IV	2	Elective	6semsester					100	1							100
Specialized Education	Chemical Engineering Exercise I	2	Elective	4semsester					100	1							100
Specialized Education	Chemical Engineering Fundamentals	2	Elective	4semsester					100	1							100
Specialized Education	Green Technology	2	Elective	6semsester					100	1							100
Specialized Education	Recycling engineering	2	Elective	6semsester					100	1							100
Specialized Education	Graduation Thesis	5	Required	7,8semester	10	1					50	1	20	1	20	1	100

Curriculum Map of Biotechnology

Academic Achievement Evaliation Items		1st grade		2nd grade		3rd grade		4th grade	
		Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
	Understanding of relations among human, society, nature, and engineering. (Target A)					FFoodProcess Engineering I (Δ)	Frood Process Engineering II(Δ)	Graduation Thesis(0)	Graduation Thesis(0)
		sity Eduation (0)	Peace Science Courses(O)			Frermentation proessensinieeringli (Δ)	Frementation Proeses Engineering III $($)	FrementationProcess Engineering I(L)	
		Area Courses (O)	Area Courses (O)						
		Health and Sports Courses(O)	Health and Sports Courses (0)						
		Area Courses (O)	Area Courses(O)	Area Courses (O)	Area Courses (O)				
		Basic language I(O)	Basic Environmental Sciences(Δ)	\cdots					
		Basic language II(O)	Basic life science(Δ)	Introduction to Fumamental 1 ndustry (L)					
	Understanding of basic natural science (target B)	CalculusI(O)	CalculusII(@)	4tumutite					
		Linear AlgebraI (0)	Linear AlgebraII(0)						
		(2T)General Mechanics I(O)	(3))General Mechanics II(®)						
		Seminar in Basic Mathematics I(O)	Sseminar in Basic Mathematics II (0)						
			(47)Basic Electromagnetism (0)						
	Acquisition of basic and advanced knowledge relating to biotechnology and life science. (Target/Lecture class)				Technical English(0)	Probability and Statistics (Δ)	Clisotecernolog \& Immunoteechology(0)		
			Basic Organic Chemistry II(Δ)	Praic Rengieerins compter Prosamming(o)	Physical Chemistry II (\triangle)	Applied Mathematics III (Δ)	Molecular BiologyIII(O)		
			Applied Mathematics I (0)	Applied Mathematics II (®)	MicrobiologyI (O)	MicrobiologyII (O)	Genetic and protein engineering(0)		
			Basic life science(\triangle)	Physical Chemistry I(®)	Molecular biology I (0)	Molecular biology II (0)	Molecular Bioinformatics (O)		
			Basic Environmental Scieneses (Δ)	Chemical Stoichiometry(0)	Biochemistry II (0)	BiochemistryIII(O)	Biotechnology (O)		
			Basic Organic Chemistry I(O)	Biochemistry I(0)	Enzyme Chemistry (0)	Bioorganic Chemistry(0)	Advaneed Organic Chemisty IV (Δ)		
			Basic Inorganic Chemistry(©)	Analytical Chemistry (0)	Chemieal Fnininering Findamenals (0)	Fermentation Technology (0)	Green Technology (\triangle)		
				\pm	Chemical Engineering Exerise (0)	Biochemical Engineering(0)	Recycling engineering (\triangle)		
				Imtroduction to Findamenal Industry (Δ)	Organic Structural Analysis (Δ)	Chemical Kinetics (O)	Food Process Engineering II (Δ)		
						FoodProcess Engineering I (Δ)	Frementation Proese Engineering III $($)		
						FPermentation proess engineeringli (Δ)			
	Acquisition of basic and advanced skills relating to biotechnology and life science. (Target/ Research class)		-		Basic Experiments in Chemistry(0)	Training of Biotechnology (@)	Experiments on Biotechnology II())	Graduation Thesis(0)	Graduation Thesis(0)
Cultivation of ability creating concept and solving problesms (achievement target D)			-		Pasic Experiments in Chemistry(0)	Training of Biotechnology I(O)	Experiments on Biotechnology II())	Graduation Thesis(0)	Graduation Thesis(0)
$\left.\left\lvert\, \begin{array}{c} 0 \\ 0 \end{array}\right.\right)$	Cultivation of communication skills (achievement target E)				Technical English(0)	Training of Biotechnology I(®)	Experiments on Biotechnology II (0)	Graduation Thesis(0)	Graduation Thesis(0)
$\underset{\sim}{0}$		Communication IA (O)	Communication IIA (0)				dill		
\mid		Communication IB (O)	Communication IIB(O)						
घ		Basic English Usagel(O)							
		Basic English UsageII (○)							
		arphermation and Datas sieme Coureses (e)							
		(Ex)	Liberal Arts Education Subjects	Basic Specialized Subjects	Specialized Subjects	Graduation Thesis	(O)Required (O) Compulsory elective (\triangle) Free elective		

