For entrants in AY 2023

Appended Form 1

Specifications for Major Program
Name of School (Program) 〔School of Engineering Cluster 1(Mechanical Systems, Transportation, Material and Energy)]

	Program of Mechanical Systems En
1. Academic Degree to be Acquired : Bachelor's degree in Engineering	
2. Overview	
(1) Overview of "English-based Bachelor's Degree Program"	
This program aims to foster and produce future members of a global society who have the knowledge to be innovative, creative, take leadership, and possess language abilities that will help them play an important role in the international world.	
This program focuses specifically on producing individuals who are capable of addressing various global issues from an engineering perspective and contribute to the creation of new and valuable solutions that are significant to both the industrial and academic societies.	
Students enrolled in the program will begin the curriculum from the first semester of their first year. In the second year, students will set off on their major programs and take the designated courses which are offered at each cluster. Major program overview is as (2).	
(2) Overview of "Program of Mechanical Systems Engineering"	
This program offers education in the fundamentals of mechanical system engineering, the structure and function	
concepts, computer-aided d the principles of the design	the principles of the design and production of new mechanical systems through intelligent numerical simulation and
information processing, as well as basic fields such as the mechanics of materials, the dynamics of vibrations, system controls, and other fields. By offering such education, it aims to develop engineers who, having a broader	
perspective on human-machine relations and environmental issues, are able to assume cutting-edge design and development roles in production engineering. In order to provide an efficient and integrated education, the teachers	
belonging to the academic society (Science and Engineering Field, Machine Engineering/Science and Technology	
Unit) are in charge of education for this program. Students are assigned to this program in the second semester of the second year. Then, in the first semester of the fourth year, students are assigned to their respective research laboratories, choose their research topics, and write up their graduation theses.	
Around sixty percent of graduates from this program will advance to graduate school. Graduates are employed in the general machinery and automotive fields, as well as in electronics, information \& communications, heavy	
industry, the chemical industry, and a broad range of other industries. Centering on manufacturers in the fields of heavy industry, transportation equipment, machinery, and materials, they work actively in the fields of R\&D, design,	

3. Academic Awards Policy (Goals of the Program and Policy for Awarding Degrees)

The Program of Mechanical Systems Engineering develops professionals capable of taking action and displaying great humanity and rationality, who can contribute to the peace, development, and survival of humankind, and to the realization of happiness while striving for co-existence with nature.

Based upon the above, this program awards a bachelor's degree in engineering to students who have acquired the following abilities in a balanced manner, as well as the number of credits necessary to meet the standard of the course.

- Acquisition of the fundamentals of mechanical system engineering, the structure and function of mechanical
system and the principles of the design and processing of mechanical systems based on new concepts, computer-aided design (CAE and CAD), measurement and control technology, mechatronics technology, the principles of the design and production of new mechanical systems through intelligent numerical simulation and information processing, as well as basic fields such as the mechanics of materials, the dynamics of vibrations, system controls, and other fields.
- The ability to assume roles in the design and development of cutting-edge production technology, while having a broader perspective about human-machine relations and environmental issues.

4. Curriculum Policy (Policy for Preparing \& Implementing Curriculum)

To ensure that students are able to achieve the goals of the program, the program develops and puts into practice a curriculum based on the following policy:
. The Program offers not only basic mechanical education but also specialized education in the structure and function of mechanical systems and the principles of the design and processing of mechanical systems based on new concepts, computer-aided design (CAE and CAD), measurement and control technology, mechatronics technology, and the principles of the design and production of new mechanical systems through intelligent numerical simulation and information processing.

- In the first year, the students take Liberal Arts Education subjects such as Peace Science Courses, Basic Courses in University Education, common subjects, and Foundation Courses, as well as specialized basic subjects and specialized practical education, such as machine shop training.
- In the first semester of the second year, the students take the specialized basic subjects that are important, together with subjects common to Cluster 1 such as "Mechanics of Materials I" and "Fluid Dynamics I". Then, from the second semester, the students take specialized subjects, such as highly professional subjects related to advanced technology that reflect the characteristics of this program, and subjects related to integrated systems technology.
- In the third year, specialized subjects become major subjects, and the students take subjects required for this program. The program tries, as far as possible, not to allocate multiple specialized subjects to the same time-slot, allowing students to take specialized subjects provided by other programs in Cluster 1 according to their personal interests.
- In the fourth year, the students are assigned to their respective research laboratories, choose their research topics, and write their graduation theses.
In the curriculum described above, teaching and learning will be implemented by utilizing active learning and online classes, depending on the delivery methods of the program, such as lectures and seminars.
In addition to strict grading using the standards clearly outlined in the syllabus, learning outcomes are evaluated based on the degree to which the goals set by the educational program are achieved.

5. Program Timing/Acceptance Conditions

- When to start the program

The English-based Bachelor's Degree programs begin in the first semester of the first year. Enrollment in Program of Mechanical Systems Engineering occurs in the second semester of the second year.
-Additional Requirements
To determine acceptance into the English-based Bachelor's Degree program, all applicants are required to have an individual consultation with the faculty committee members.

- Credit Requirements

By the first semester of the second year, students must have acquired the Liberal Arts Education subjects and specialized basic subjects that are commonly specified in Cluster 1.
6. Qualifications to be Acquired

Type-1 High School Teaching License (Industry)
(Students must acquire the required number of credits for the Type-1 High School Teaching License (Industry), in addition to the required number of credits for this program.)

7. Class subjects and course content

* For class subjects, see the Course List table on the attached sheet.
* For course content, see the syllabus for each fiscal year.
* All class subjects are taught in Japanese. Course materials will be written in both Japanese and English or only English.

8. Academic Achievements

At the end of each semester, the evaluation criteria are applied to each academic achievement evaluation item so that the level of attainment is clearly demonstrated. Students' grade calculation for each subject, from admission to the current semester, is given in one of three levels: "Excellent," "Very Good," and "Good," based on evaluation criteria calculated by adding the weighted values to the numerically-converted values of their academic achievement in each subject being evaluated $(S=4, A=3, B=2$, and $C=1)$.

Evaluation of academic	Converted values		
achievement		Academic achievement	Evaluation criteria
S(Excellent: 90 points or higher)	4		
A(Superior:80-89 points)	3	Excellent	$3.00 \sim 4.00$
B(Good: 70-79 points)	2	Very Good	$2.00 \sim 2.99$
C(Fair: 60-69 points)	1	Good	$1.00 \sim 1.99$

* For the relationship between evaluation items and evaluation criteria, see the attached Sheet 2 .
* For the relationship between evaluation items and class subjects, see the attached Sheet 3.
* For the curriculum map, see the attached Sheet 4.

9. Graduation Thesis (Graduation Work) (Positioning, When and how it is assigned, etc.)

- Positioning

The graduation thesis is designed to be one component of the overall evaluation of academic achievement.
It is positioned as one of the major subjects to evaluate the following:
Ability/Skills (2) Developing the ability to solve engineering issues on one's own initiative with flexible thinking and creativity

Collective capacity (1) Developing communication skills and the ability to globally collect and dispatch information.

- When and how it is assigned
oWhen it is assigned: At the start of the fourth year. (Only those who satisfy the conditions for embarking on a graduation thesis will be assigned a thesis.)
Conditions for embarking on a graduation thesis
(1) Students must gain 43 credits or more out of 46 credits, the required number for graduation in Liberal Arts Education subjects.
(2) Students must gain 10 credits or more in the first group of specialized basic subjects
(3) Students must gain all of the required credits in Machine Design and Drawing, CAD, Machine Shop Training, Experiments in Mechanical Engineering, and Mechanical Engineering Design and Production.
(4)Students must gain 11 credits or more out of 15 credits, the required number in Liberal Arts Education subjects, in the second group of specialized basic subjects.
(5) Students must gain a total of 68 credits or more in specialized basic subjects and specialized subjects.
- How it is assigned

The research details of each laboratory to which the students can be assigned are explained by giving out handouts at a briefing held in February, in the second semester of the third year. After the number of students acceptable to each laboratory is given at the start of the fourth year, students who can begin their graduation theses are assigned as requested. In the case that the number of students exceeds the acceptable limit for a laboratory, adjustments may be made.

The graduation thesis must be written in English in "English-based Bachelor's Degree Program".

10. Responsibility-taking System

(1) PDCA Responsibility-taking System ("Plan," "Do," "Check," and "Act")

The cluster leader and program leader are responsible for executing this program. Faculty committee members responsible for this program make plans, while self-check/evaluation committee members responsible for this
program make evaluations. The cluster and program teachers committee scrutinize the plans and evaluations from time to time for further improvement. When major issues arise, a working group may be established at the discretion of cluster leader and program leader.
(2) Program assessment

- Criteria for program assessment
- Whether or not each class subject is properly allocated in light of the goals of the program, and whether course content is appropriate
- Whether or not, on average, students taking the course have achieved or exceeded the goals
- Whether or not the system runs in proper cycles that enable the continuous improvement of the program
- How the program is assessed
- Conducting self-assessment for each subject based on class improvement questionnaires from students who have taken course, and based on performance rating results
- Conducting questionnaires (obtained at graduation) in suitable cycles, to evaluate the validity of the goals - Position on feedback to students and how it should be conducted

Search records of each student's learning status, prepared by tutors, are kept.
Based on these records, study guidance is given to each student. At the same time, requests from students are discussed at teachers' meetings as needed. Furthermore, based on the results of the course improvement questionnaires obtained from students, subject teachers draw up class improvement plans that reflect the questionnaire results.

Cluster 1 （Mechanical Systems，Transportation，Material and Energy）
© Required subject（period of registration specified）
O Compulsory elective subject（any of these subjects shall be registered）
\triangle Free elective subject（any of these subjects shall be registered）

Subject type					Required No．of credits	Class subjects，etc．	No．of credits	Type of course registrat ion	Year in which the subject is taken（＊The lower figure means semester）（Note 1）																
					1st grade				2nd grade				3rd grade				4th grade								
					Spring Fall				Spring		Fall		Spring		Fall		Spring		Fall						
					1T				2 T	3T	4T		2 T	3 T	4 T	1T	2 T	3T	4T	1T	2 T	3T	4 T		
Peace Science Courses						2		2	Required		\bigcirc														
		Introduction to University Education				2	Introduction to University Education	2	$\begin{array}{\|c} \text { Compuls } \\ \text { ory } \\ \text { elective } \end{array}$	（）															
		Introductory Seminar for First－Year Students				2	Introductory Seminar for First－Year Students	2	$\begin{array}{\|c} \hline \text { Compuls } \\ \text { ory } \\ \text { elective } \\ \hline \end{array}$	（ $)$															
		Advanced Seminar			0		1	Free elective			\triangle	\triangle													
	U	Area Courses			4	Courses in Arts and Humanities／Social Sc	2	Compuls ory elective	\bigcirc		\bigcirc														
					4	Courses in Natural Sciences	2	$\begin{array}{\|c\|} \hline \text { Compuls } \\ \text { ory } \\ \text { elective } \end{array}$		\bigcirc		\bigcirc													
					2	Basic English UsageI	1	Required	（）	（ ）															
				Usage		Basic English UsageII	1				（ ）	（ $)$													
				Communic		CommunicationIA	1	Required	（0）	（）															
						Communication IB	1		（）	（）															
				Communic		Communication IIA	1	Required			（0）	（）													
						Communication IIB	1				（0）	（ $)$													
$\frac{.0}{3}$		Initial Foreign Languages （Select one language from German，French，Spanish， Russian，Chinese，Korean， and Arabic）			2	1 subjects from Basic language I	1	$\left\{\begin{array}{l} \text { Compuls } \\ \text { ory } \\ \text { elective } \end{array}\right.$	\bigcirc																
$$					2	1 subjects from Basic language II	1			\bigcirc															
$\begin{aligned} & \underset{T}{0} \\ & \underset{\sim}{0} \end{aligned}$		Information and Data Science Courses			2	Introduction to Information and Data Sciencies	2	Required		©															
$\begin{aligned} & \sqrt[n]{2} \\ & \underset{\sim}{z} \\ & =\sim \end{aligned}$		Health and Sports Courses			2		1or2	$\begin{array}{\|c} \hline \text { Compuls } \\ \text { ory } \\ \text { elective } \end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc													
	Basic Subjects				18	CalculusI	2	Required		（）															
					CalculusII	2					（0）														
					Linear AlgebraI	2	（ $)$																		
					Linear AlgebraII	2				（）															
					Seminar in Basic Mathematics I	1			（0）																
					Seminar in Basic Mathematics II	1					（ $)$														
					General Mechanics I	2	（ $)$																		
					General Mechanics II	2				（ ）															
					Basic Electromagnetism	2							（0）												
					Experimental Methods sma LLoboratery Work in Physiss（1Noes 4）	1				（ ）															
						1					（0）														
					2	General Chemistry	2	$\begin{aligned} & \text { Compuls } \\ & \text { ory } \\ & \text { elective } \end{aligned}$						\bigcirc											
					mental Methods and Latorator W Wektin Chenemisty（INote 4）	1				\bigcirc															
						1					\bigcirc														
	No．of cred	dits r	equired	or graduation		46																			

Note 1：When students fail to acquire the credit during the term or semester marked with $\bigcirc, \bigcirc, \triangle$ in the boxes for the year in which the course is taken，they can take the course in subsequent terms or semesters．Depending on class subject，courses may be offered in semesters or terms different from those scheduled．
Note 2：The credit obtained by mastery of＂English－speaking Countries Field Research＂or self－directed study of＂Online Seminar in English A•B＂cannot be counted towards the credit necessary for graduation．The credit obtained by Overseas Language Training can be recognized as Communication I or II if application is made in advance．For more details，please refer to the article on English in Liberal Arts Education in the student handbook．
Note 3：We have a recognition of credit system for foreign language proficiency tests．For more details，please refer to the article on Foreign Language in Liberal Arts Education in the student handbook．
Note 4：Students must take both「Experimental Methods and Laboratory WorkI（1credit）」and「Experimental Methods and Laboratory WorkII （1credit）」．

Cluster 1 Basic Specialized Subjects

(O) Required subject

OCompulsory elective subject
Free elective subject

※Students can select either Machine Shop Training (a) or Machine Shop Training (b)

Cluster 1 Specialized Subjects (Program of Mechanical Systems Engineering)

(0) Required subject

OCompulsory elective subjer
\triangle Free elective subject

Class Subjects			Class Hours/Week																Note				
				1st grade			2nd grade				3rd grade					4th grade							
							$\left.\begin{array}{\|l\|l\|} \hline \text { pring } & \text { Fall } \\ \hline 1 \mathrm{~T} & 2 \mathrm{~T} \\ \hline \end{array} 3 \mathrm{~T} \right\rvert\, 4 \mathrm{~T} .$				Spring		Fall		$\begin{array}{\|l\|l\|l\|} \hline \text { Spring } & \text { Fall } \\ \hline 1 \mathrm{~T} & 2 \mathrm{~T} & 3 \mathrm{~T} \end{array} 4 \mathrm{~T}$								
								2 T															
Dynamics of Vibrations I	2		()										4										
Experiments in Mechanical Engineering	1		()								3	3											
Mechanical Engineering Design and Production	1		()										3	3	3								
Mechanical Materials I	2		\bigcirc									4											
Mechanical Materials II	2		\bigcirc											4	4								
Fracture Mechanics	2		\bigcirc											4									
Fusion and Solidification Processings I	2		\triangle									4											
Plastic Working and Powder Metallurgy II	2		\triangle										4										
Materials Science	2		\bigcirc							4													
Machining	2		()									4											
Fluid Dynamics II	2		\bigcirc							4													
Heat Transfer I	2		\bigcirc						4														
Combustion Engineering Fundamentals	2		\triangle								4												
Internal Combustion Engines	2		\triangle										4										
Data Processing and Numerical Analysis	2		()							4													
Theory of Elasticity and Plasticity	2		\bigcirc								4												
Computational Solid Mechanics	2		\bigcirc									4											
Mechanics of Materials II	2		\bigcirc						4														
Mechanism and Kinematics	2		\bigcirc							4													
Dynamics of Vibrations II	2		\bigcirc								4												
Control Engineering II	2		\bigcirc						4														
Electrical and Electronic Engineering	2		\bigcirc								4												
Mechatronics	2		\bigcirc										4										
Measurement and Signal Processing	2		()											4									
Mechanical System Control	2		\bigcirc								4												
Data Structure and Algorithm	2		\bigcirc											4	4								
Manufacturing System	2		\bigcirc									4											
Machine Elements Design	2		()						4														
Machine Design	2		\bigcirc										4										
Systems Engineering	2		()							4													
Computer Programming	2		\bigcirc									4											
Transportation	2		\triangle						4														
Internship	1		\bigcirc										3	3									
Graduation Thesis	5		()																				

Sheet 2

Academic Achievements in Educational Program for Mechanical Systems Engin
 The Relationship between Evaluation Items and Evaluation Criteria

		Academic Achievements	Evaluation Criteria		
		Evaluation Items	Excellent	Very Good	Good
	(1)	To develop the ability to work positively and independently on the development of local societies, international society, and business and industries.	To be able to be sufficiently engaged in the development of local societies, international society, and business and industry.	To be able to be engaged in the development of local societies, international society, and business and industry at the standard level.	To be able to be engaged in the development of local societies, international society, and business and industry at the minimum level
	(2)	Acquiring necessary basic knowledge for an engineer and developing the ability to consider logically.	Acquiring necessary basic knowledge for an engineer and being able to sufficiently and logically consider it.	Acquiring necessary basic knowledge for an engineer and being able to logically consider it at the standard level.	Acquiring necessary basic knowledge for an engineer and being able to logically consider it at the minimum level.
	(1)	Acquring basis of mechanical system engineering steadily and developing the applied skill.	Acquring basis of mechanical system engineering steadily, and being able to apply it sufficiently.	Acquring basis of mechanical system engineering steadily, and being able to apply it at the standard level.	Acquring basis of mechanical system engineering steadily, and being able to apply it at the minimum level.
	(2)	Developing the ability of solving the technological issues with flexible ideas and creativity.	Based on flexible ideas and creativity, to be able to sufficiently solve problems related to engineering.	Based on flexible ideas and creativity, to be able to independently solve problems related to engineering to the standard level.	Based on flexible ideas and creativity, to be able to independently solve problems related to engineering at the minimum level.
	(1)	Cultivating abilities of communication and of internationally collecting information and releasing it	To be able to communicate sufficiently with others, collect and release information internationally.	To be able to communicate with others, collect and release information internationally at the standard level	To be able to communicate with others, collect and release information internationally at the minimum level.

Placement of the Liberal Arts Education in the Maior Program

We aim to cultivate a well-rounded character, backed up by a broad range of basic knowledge and an understanding of global environmental issues and problems in the
 and between nature and engineering. To that end, the following are offered: (1) The acquisition of the necessary abilities and attitudes to see various social issues multilaterally and to understand the complete picture (2) The acquisition of a broader perspective after being exposed to fields outside of one's area of expertise (3)
 machine engineers in society, and to solve ethical problems

Subject type	Class subjects	credits	Type ofcourseregistration	Period	Evaluation items										Total weighte d values of evaluat ion items in the subject
					Knowledge and Understanding				Abilities and Skills				Comprehensive Abilities		
					(1)		(2)		(1)		(2)				
					Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	$\begin{aligned} & \text { Weightsed } \\ & \text { values of } \\ & \text { vevaluation } \\ & \text { items } \end{aligned}$	Weighted values of evaluation items in the subject	Weightsed values of evaluation items	Weighted values of evaluation items in the subject	$\left.\begin{aligned} & \text { Weightsed } \\ & \text { Walues of } \\ & \text { vevaluation } \\ & \text { items } \end{aligned} \right\rvert\,$	Weighted values of evaluation items in the subject	$\left\|\begin{array}{l} \text { Weightsed } \\ \text { values of } \\ \text { evaluation } \\ \text { items } \end{array}\right\|$	
Liberal Atst Education	Introduction to University Eduation	2	Required	1semsester-1T	100	1									100
Liberal Atst Education		2	Required	1semsester							50	1	50	1	100
Liberal Atst Education	Peace Science Courses	2	Elective	1semsester-2T	100	1									100
Liberal Ats Education	Basic English UsageI	1	Required	1semsester									100	1	100
Liberal Atst Education	Basic English UsageII	1	Required	2semsester									100	1	100
Li.beral Atst Education	CommunicationIA	1	Required	1semsester									100	1	100
Liberal Atst Education	Communication IB	1	Required	1semsester									100	1	100
Liberal Atst Education	Communication IIA	1	Required	2semsester									100	1	100
Liberal Atst Education	Communication IIB	1	Required	2semsester									100	1	100
Li.beral Atst Education	Basic language I	1	Elective	1semsester-1T									100	1	100
Liberal Atst Education	Basic language II	1	Elective	1semsester-2T									100	1	100
Liberal Atst Education	Soms	4	Elective	1,2,3,4semsester	100	1									100
Liberal Atst Education	Atea Course(Curses in Satural Seienes)	4	Elective	1,2,3,4semsester	100	1									100
Liberal Atst Education	Health and Sports Courses	2	Elective	1,2semsester	100	1									100
Liberal Atst Education	Datas Semices	2	Required	1semsester			100	1							100
Liberal Atst Education	CalculusI	2	Required	1 semsester			100	1							100
Liberal Atst Education	CalculusII	2	Required	2semsester			100	1							100
Liberal Atst Education	Linear AlgebraI	2	Required	1semsester			100	1							100
Liberal Atst Education	Linear AlgebraII	2	Required	2 semsester			100	1							100
Li.beral Atst Education	Seminar in Basic Mathematics 1	1	Required	1semsester			100	1							100
Liberal Atst Education	Seminar in Basic Mathematics II	1	Required	2semsester			100	1							100
Liberal Atst Education	General Mechanics I	2	Required	1semsester			100	1							100
Liberal Atst Eduction	General Mechanics II	2	Required	2semsester			100	1							100
Liberal Atst Education	Basic Electromagnetism	2	Required	3semsester			100	1							100
Liberal Atst Education		2	Required	2semsester			100	1							100
Liberal Atst Education	General Chemistry	2	Elective	3semsester			100	1							100
Liberal Atst Education	whemmatamer	2	Elective	2semsester			100	1							100
Specialized Eduction	Applied Mathematics I	2	Required	2semsester					100	1					100
Specialized Eduction	Applied Mathematics II	2	Required	3semsester					100	1					100
Specialized Eduction	Applied Mathematics III	2	Required	4semsester					100	1					100
Specialized Eduction	Engineering Mathematics A	2	Elective	5semsester					100	1					100
Specialized Eduction	Engineering Mathematics C	2	Elective	4semsester					100	1					100
Specialized Eduction	Probability and Statistics	2	Required	3semsester					100	1					100
Specialized Eduction	Synthesis of Applied Mathematics	2	Elective	6semsester					100	1					100
Specialized Education	Practice of Mechanics	1	Elective	2semsester					100	1					100
Specialized Eduction		2	Required	2semsester					100	1					100
Specialized Eduction	Technical English	1	Required	3semsester					100	1					100
Specialized Eduction	Pasie Elajuering Computer Peveraming	2	Required	3semsester			100	1							100
Specialized Eduction	Experinents in Mechaniel Engineering	1	Required	5semsester							80	1	20	1	100
Specialized Education	${ }^{\text {Pumamenalas of Paterals Proessing }}$	2	Required	3semsester					100	1					100
Specialized Education	Itradetutionto Enymerering Materials	2	Required	3semsester					100	1					100
Specialized Eduction	Mechanics of Material I	2	Required	3semsester					100	1					100
Specialized Eduction	Dynamics of Vibrations I	2	Required	4semsester					100	1					100
Specialized Eduation	Control Engineering I	2	Required	3semsester					100	1					100
Specialized Education	Fluid Dynamics I	2	Required	3semsester					100	1					100
Specialized Eduation	Thermodynamics I	2	Required	3semsester-1T					100	1					100
Specialized Eduction	Machine Design and Drawing	1	Required	2 semsester					100	1					100
Specialized Eduction	Computer Aided Design	1	Required	3semsester							100	1			100
Specialized Eduation		1	Required	6semsester							100	1			100
Specialized Education	Computer Programming	2	Elective	5semsester			100	1							100
Specialized Education	Machine Shop Training (a)	1	Required	2semsester							100	1			100
Specialized Eduction	Machine Shop Training (b)	1	Required	3semsester							100	1			100

Subject type	Class subjects	credits	Type ofcourseregistration	Period	Evaluation items										Total weighte d dalues of of evaluat ion items in the subject
					Knowledge and Understanding				Abilities and Skills				Comprehensive Abilities (1)		
					(1)		(2)		(1)		(2)				
					Weighted values of evaluation items in the subject	$\begin{aligned} & \text { Weightsed } \\ & \text { Wealues of } \\ & \text { vevaluation } \\ & \text { items } \end{aligned}$	Weighted values of evaluation items in the subject	$\begin{aligned} & \text { Weightsed } \\ & \text { Wealues of } \\ & \text { vevaluation } \\ & \text { items } \end{aligned}$	Weighted values of evaluation items in the subject	$\left.\begin{aligned} & \text { Weightsed } \\ & \text { values of } \\ & \text { evaluation } \\ & \text { items } \end{aligned} \right\rvert\,$	Weighted values of evaluation items in the subject		Weighted values of evaluation items in the subject	$\begin{aligned} & \text { Weightsed } \\ & \left.\begin{array}{l} \text { Welues of } \\ \text { veluauation } \\ \text { entems } \end{array} \right\rvert\, \end{aligned}$	
Specialized Education	Mechanical Materials I	2	Elective	5semsester					100	1					100
Specialized Education	Mechanical Materials II	2	Elective	6semsester					100	1					100
Specialized Education	Fracture Mechanics	2	Elective	6 semsester					100	1					100
Specialized Education	Fusion and Solidification Proessings 1	2	Elective	5semsester					100	1					100
Specialized Education		2	Elective	6 semsester					100	1					100
Specialized Education	Materials Science	2	Elective	4semsester					100	1					100
Specialized Education	Machining	2	Required	5semsester					100	1					100
Specialized Education	Fluid Dynamics II	2	Elective	4semsester-4T					100	1					100
Specialized Education	Heat Transfer I	2	Elective	4semsester-3T					100	1					100
Specialized Education	Combustion Engineering Fundamentals	2	Elective	5 semsester					100	1					100
Specialized Education	Internal Combustion Engines	2	Elective	6 semsester					100	1					100
Specialized Education	Data Preessing nad Numemeal Analysis	2	Required	4semsester					100	1					100
Specialized Education	Theory of Elasticity and Plasticity	2	Elective	5semsester					100	1					100
Specialized Education	Computational Solid Mechanics	2	Elective	5semsester					100	1					100
Specialized Education	Mechanics of Materials II	2	Elective	4semsester					100	1					100
Specialized Education	Mechanism and Kinematics	2	Elective	4semsester					100	1					100
Specialized Education	Dynamics of Vibrations II	2	Elective	5semsester					100	1					100
Specialized Education	Control Engineering II	2	Elective	4semsester					100	1					100
Specialized Education	Electrical and Electronic Engineering	2	Elective	5semsester					100	1					100
Specialized Education	Mechatronics	2	Elective	6 semsester					100	1					100
Specialized Education	Measurement and Sigmal Processing	2	Required	6semsester					100	1					100
Specialized Education	Mechanical System Control	2	Elective	5semsester					100	1					100
Specialized Education	Data Structure and Algorithm	2	Elective	6semsester					100	1					100
Specialized Education	Manufacturing Systems	2	Elective	5semsester					100	1					100
Specialized Education	Machine Elements Design	2	Elective	5semsester					100	1					100
Specialized Education	Machine Design	2	Elective	4semsester					50	1	50	1			100
Specialized Education	Systems Engineering	2	Required	4semsester					100	1					100
Specialized Education	Transportation	2	Elective	4semsester					100	1					100
Specialized Education	Internship	1	Elective	6semsester	40	1					30	1	30	1	100
Specialized Education	Graduation Thesis	5	Required	7,8semsester							55	1	45	1	100

Curriculum Map of Mechanical Systems Engineering
Sheet 4

Academic achievements Evaluation Items		1st grade		2nd grade		3rd grade		4th grade	
		Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
	To develop the ability to	Area Courses (O)	Area Courses (O)	Area Courses (O)	Area Courses (O)		Internship (O)		
	work positively and	Health and Sports Courses(0)	Health and Sports Courses(0)						
	independently on the	Introduction to University Education(©)							
	development of local societies, international	Peace Science Courses (O)							
	Acquiring necessary basic knowledge for an engineer and developing the ability to consider logically.	Sion and Dats Stiencies (e)	CalculusII(O)	Basic Electromagnetism (๑)					
		CalculusI (0)	Seminar in Basic Mathematics II(O)	General Chemistry (O)					
		Seminar in Basic Mathematics I (0)	Linear AlgebraII(O)	Rasie Engineering Compter Programming(0)					
		Linear AlgebraI (0)	General Mechanics II(O)						
		General Mechanics I (○)							
	Acquring basis of mechanical system engineering steadily and developing the applied skill.		Practice of Mechani	Applied Mathematics II(○)	Applied Mathematics III(O)	Engineering Mathematics $\mathrm{A}(\mathrm{O})$	Synthesis of Applied Mathematics (0)		
			bmitum	Probability and Statistics(@)	Engineering Mathematics C(O)	Mechanical Materials I(O)	Mechanical Materials II(O)		
			Applied Mathematics I(○)	Mechanics of Material I(O)	Dynamics of Vibrations I(O)	Machining (O)	Fracture Mechanics(O)		
			Machine Design and Drawing(0)	Fluid Dynamics I(@)	Fluid Dynamics II(O)	Combustion Engineering Fimamentas(Δ)	Internal Combustion Engines (Δ)		
				Fundamentals of Materials Processing(0)	Mechanics of Materials II(O)	Manufacturing Systems(0)	Mechatronics(O)		
				An Introdution to Enginering Materias(O)	Mechanism and KinematicsO)	Electrical and Electronic Engineering(0)	Machine Design(O)		
				Control Engineering I(O)	Systems Engineering(0)	Theory of Elasticity and Plasticity(0)	Pastici Working and Powier Metallury MI()		
				Thermodynamics I(O)	Materials Science(O)	Fusion and Solidification Proeesissgs I(Δ)	Data Structure and Algorithm (0)		
					Heat Transfer I(O)	Dynamics of Vibrations II(O)	Neasurement and Sigal Procesing (©)		
					Data Proessing and Nimenerial A Analsisi(0)	Mechanical System Control(O)			
					Control Engineering II(O)	Computer Programming(O)			
					Machine Elements Design (๑)	Computational Solid Mechanics(O)			
					Transportation(\triangle)				
	Developing the ability of solving the technological issues with flexible ideas and creativity.	Introductor Seminararer Frist Years Suders(0)	Machine Shop Training (a) (@)	Machine Shop Training (b) (@)	Systems Engineering(0)	Experiments in Mechanical Engineering (0)		Graduation Thesis(O)	Graduation Thesis(○)
				Computer Aided Design(O)			Internship(O)		
	Cultivating abilities of communication and of internationally collecting information and releasing it		Basic English UsageII(O)			Experinents in Mechnmical Engineering $+(0)$	Internship(O)	Graduation Thesis(0)	Graduation Thesis(@)
		Basic English UsageI(O)	Communication IIA (O)	Technical English(0)					
		CommunicationIA(O)	Communication IIB(O)						
		Communication IB(O)							
		Basic language I(O)							
		Basic language II(O)							
			Foundation Courses \qquad \qquad (O) Compulsory elective subject (Δ) Free elective subject						
Color-code Common subjects Symbol (©) Required subject						Specialized Subjects			

