ウォータールー大学(カナダ)研修報告書 ステンレス鋼/Al 合金異材組み合わせのホットワイヤ・ レーザ AM 技術の開発

先進理工系科学研究科 機械工学プログラム 丸本啓太

1. はじめに

本報告では2023年7月27日から9月1日までの間,カナダのウォータールー大学において実施した実験および分析について報告する.

2. 共同研究課題の決定

本研究では、ステンレス鋼の基材の上にアルミニウムの造形を行うマルチマテリアル AM の手 法を開発した.鉄とアルミニウムを接合すると脆弱な金属間化合物 (IMC) を生じる.このよう な異材の接合ではこの IMC の厚さを制御することが強度上において非常に重要となる.そこで本 研究ではホットワイヤ法、半導体レーザ、フラックスの3つを組み合わせることで IMC の制御を 試みた.ホットワイヤ法はワイヤを通電加熱して送給する方法であり、造形の効率を上昇させつ つも入熱を低くすることができる.半導体レーザは熱源形状の自由度が高く、エネルギ密度も低 い.フラックスはアルミニウムとステンレスの接合を助けるものであり、このような異材接合に おいては不可欠のものである.

この度の海外共同研究では造形方法や化学組成の異なる造形体の界面に生成した IMC を詳細 に分析することを目的とした.具体的にはEDXを用いて界面に生じたIMCの化学組成を予測し, その結果を用いて EBSD による結晶の分析を行うことを目標とした.

3. 研修/共同研究スケジュール

7月27日 出国 7月28日~9月1日 研究 9月2日 帰国

4. 研修先/共同研究派遣先の概要

大学名: University of Waterloo 所在地:カナダ オンタリオ州 指導教員: Prof. Adrian Gerlich

5. 共同研究の内容

5.1 研究概要

近年 Additive manufacturing (AM) 技術が大きな注目を浴びている. AM は積層造形とも呼ばれ, 材料を層ごとに積層して形状を作製する製造方法である. 従来ものづくりにおいて一般的であっ た除去加工と比較して AM は造形自由度が高く,切りくずのような無駄になる箇所が少ない. こ のような特徴からこれまでの製造方法と一線を画しており,切削困難な複雑形状を作製可能であ り,様々な材料を使用可能である. その中でさらなる軽量化を目指す場合マルチマテリアル化が 必要となる.

マルチマテリアル化において広く研究されている組み合わせとして鉄基の合金とアルミニウム合金がある.鉄-アルミニウム間の接合はそれぞれの材料が有する欠点と利点を補完しあうため、古くから研究されているが、接合界面において脆弱な金属間化合物(IMC)を生じることから、継手の性能に対して IMC の生成が大きな影響を及ぼす.そのため、IMC の生成を制御しより高品質な継手を得るために様々な接合方法が開発された.その中でもレーザ溶接(レーザブレージング)は高速な接合が可能であり、自動車の製造などで利用されている.本研究ではこのレーザブレージングをもとにした手法で異材の造形を試みた.

5.2 分析に用いた試験片

この度の海外共同研究では事前に造形体を作製し、断面観察用の試験片を渡航先で分析した. 分析した試験片は二種類の手法での造形を行ったものである.一つ目がフラックスを基材に塗布 して造形を行う手法,もう一つがフラックスコアードワイヤを使用する手法で作製した試験片に おいて分析を行った.

母材にはオーステナイト系ステンレス鋼を使用し、フラックスを塗布する実験では塩化物系フ ラックスを使用し、水と混合したフラックスを複数回塗布、乾燥させることでコーティングを行 った. 造形は Fig. 1 に示すイラストのように造形方向後方からワイヤを供給する形で行った. フ ラックスを塗布した実験では添加ワイヤに 5000 系アルミニウム合金製のワイヤを使用した. フ ラックスコアードワイヤを使用した実験ではフープに 4000 系アルミニウム合金を使用したワイ ヤを使用した.

Fig. 2に示す界面近傍における EDX の線分析の結果からフラックス塗布の方法で造形を行った 試験片では Fe-Al の二元系金属間化合物が生成していることが確認できる.一方で FCW を使用 して造形を行った試験片では界面いおいて Si が濃化していることが確認できることから Fe-Al-Si の三元系金属間化合物が生成していることが確認できる.それぞれの試験片で異なる種類の IMC が生じていることが確認できるが, SEM の倍率不足並びに EDX の精度から IMC が複数相から構 成されているのかや組成を正確に同定することはできない.

Fig. 1 Schematic illustration of the experiment setup.

(a) Flux-coated specimen.

(b) FCW specimen.

5.3 先行研究

鉄-アルミニウムの接合において金属間化合物(IMC)は強度に大きな影響を及ぼすことから 様々な研究が行われており、レビュー論文も存在する¹⁾. Table 1 にレーザブレージングにおける IMC の研究事例を示す.様々な形態の IMC が報告されているが大別して Fe-Al の二元系 IMC と Fe-Al-Si の三元系 IMC に分けることができる.

Fe-Alの二元系 IMC では Fe₂Al₅や FeAl₃, Fe₄Al₁₃などが報告されており,その他の報告事例は 少ない.しかしながら Fe-Al-Si の三元系 IMC は様々な種類の IMC が報告されており, Table 2 に 示すように構造や化学組成が大きく異なる IMC が多数報告されている²⁰. ところで EBSD におい て菊池パターンを分析する際には結晶構造情報などの情報が必要となる.Fe-Al-Si の IMC のよう に多数の組成が予想される場合には事前に絞りこみを行われなければならない.そのため本研究 では高倍率での EDX による IMC の分析から予想される IMC を決定し.その結果をもとに EBSD による分析を行うこととした.

Joint Type	Laser System	Aluminum Alloy	Steel	Filler Metal	Joining Approach	Mechanical Properties	Reported IMCs	Ref.
	CW fiber laser, 5 KW max. power	6061 2 mm-thick	Q235 (galvanized) 2 mm-thick	ER4043 solid wire	Aluminum on top, tilted wire feeding, Cu backing plate	70.4 MPa max. tensile strength	Fe ₂ Al ₅ Zn _{0.4} , Fe ₃ Al _{0.5} Si _{0.5} , Fe ₃ Al _{0.7} Si _{0.3}	[58]
	CW fiber laser, 6 kW max. power	6061 1.5 mm-thick	22MnB5 1.9 mm-thick	ZnAl15 solid wire	Aluminum on top, different defocusing distances to widen processing parameters windows	2793 N max. shear load	Fe ₂ (Al,Zn) ₅ , FeZn ₁₀	[60]
	CW fiber laser, 4 kW max. power	6061 1 mm-thick	DP590 (galvanized) 1 mm-thick	ZnAl15 solid wire	Aluminum on top, application of external alternating magnetic field	2.26 kN max. shear load	Al ₃ Fe ₂ Zn _{0.4} , FeZn ₁₀ , ZnAl	[82]
Butt	CW fiber laser, 10 kW max. power	6061 2 mm-thick	Q235 (galvanized) 2 mm-thick	ER4043 solid wire	60° bevel angle at aluminum, 30° and 45° bevel angle at steel	150 MPa max. tensile strength	Fe ₂ Al ₅ , FeAl ₃	[84]
	CW fiber laser, 6 kW max. power	6061 1.5 mm-thick	DP590 1.2 mm-thick	ER1100, ER4043, ER4047 solid wires	45° bevel angle at steel side, 1.0 mm root opening (gap)	204 MPa max. tensile strength	Fe ₂ Al ₅ , FeAl ₃ , Fe ₂ (Al,Si) ₅ , Fe(Al,Si) ₃ , Fe ₂ Al ₈ Si	[87]
	CW fiber laser, 10 kW max. power	6061 2 mm-thick	DP590 2 mm-thick	Al-12%Si flux-cored wire	Different combinations of beveling aluminum and steel, respectively:1) half-V and square; 2) half-Y and half-Y; 3) half-Y and half-V	145.8 MPa max. tensile strength	Fe(Al,Si) ₃ , Fe _{1.8} Al _{7.2} Si	[85]
	CW fiber laser, 6 kW max. power	6061 2 mm-thick	DP590 2 mm-thick	Al-12%Si flux-cored wire	45° bevel angle at both sides, 1.0 mm root opening (gap)	140 MPa max. tensile strength	Fe(Al,Si) ₃ , Fe ₂ (Al,Si) ₅ , Fe _{1.8} Al _{7.2} Si	[86]
	CW fiber laser, 6 kW max. power	6061 1.5 mm-thick	DP590 1.2 mm-thick	ZnAl2, ZnAl15 and ZnAl22 flux-cored wires	45° bevel angle at aluminum side, 1.0 mm root opening (gap)	274 MPa max. tensile strength	FeZn ₁₀ , Fe ₂ Al ₅ Zn _{0.4}	[88]

Table 1 Fe-Al and Fe-Al-Si IMCs report¹).

	Table	2 Fe-	Al-Si	Crystal	structure	data ²⁾ .
--	-------	-------	-------	---------	-----------	----------------------

	Composition, at.%			Pearson	Snace	I attice Parameter	
Phase	Al	Fe	Si	Symbol	Group	nm	Reference
$Al_2Fe_3Si_3(\tau_1)$	25.0	37.5	37.5	aP16	$P\overline{1}$	a = 0.46512	1996Yan
						b = 0.63261	
						c = 0.7499	
						$\alpha = 101.375^{\circ}$	
						$\beta = 105.923^{\circ}$	
						$\gamma = 101.237^{\circ}$	
Al ₂ FeSi (τ ₂₃)	50.0	25.0	25.0	(0)	Cmma	a = 0.7995	1989Ger2
						b = 1.5162	
						c = 1.5221	
$Al_{2.7}FeSi_{2.3} (\tau_4) (\delta)$	45.0	16.7	38.3	<i>t</i> /24	I4/mcm	a = 0.607	1969Pan
						c = 0.950	
					or		
				oP24	Pbcn	a = 0.6061	1995Gue1
						b = 0.6061	
						c = 0.9525	
$Al_{15}Fe_6Si_5(\tau_5)(\alpha)$	57.7	23.1	19.2	(h)	P63/mmc	a = 1.2404	1977Cor
						c = 2.6223	
$Al_{4.5}$ FeSi (τ_6) (β)	69.2	15.4	15.4	mC52	A2/a	a = 0.6161	1994Rom
						b = 0.6175	
						c = 2.0813	
						$\beta = 90.42^{\circ}$	
$Al_{63.5}Fe_{20.5}Si_{16}(\tau_7)(\gamma)$	63.5	20.5	16.0	<i>(m)</i>		a = 1.78	1967Mun
						b = 1.025	
						c = 0.890	
						$\beta = 132^{\circ}$	
$Al_6Fe_4Si_6(\tau_8)$	37.5	25.0	37.5	mP64	$P2_1/n$	a = 0.7179	1995Gue2
						b = 0.8354	
						c = 1.4455	
						$\beta = 93.80^{\circ}$	
$Al_2Fe_3Si_4(\tau')$	22.2	33.3	44.4	oC36	Cmcm	a = 0.36687	1996Yan
						b = 1.2385	
						c = 1.0147	
Al ₄ Fe _{1.7} Si (τ")	59.7	25.4	14.9	(h)	P6 _y /mmc	a = 0.7509	1989Ger1
						c = 0.7594	
(a) = orthorhombic: (b) =	hexagonal: (m) = monoclini					

5.4 分析および考察

5.4.1EDX による成分分析

フラックスを塗布して造形を行った試験片とフラックスコアードワイヤを使用して造形を行った試験片の接合界面を対象に EDX による成分分析を行った. なお,分析の対象とする成分はワイヤや母材に確実に存在する成分と本研究の対象である Si とした.

フラックス塗布による造形の成分分布を Fig. 3 に示す.一部で Si が濃化している箇所が確認で きるが、この部分に関しては試験片の研磨に使用した SiO₂が残留したものだと考えられる. IMC において Si はほぼ確認できない.次に線分析の結果を Fig. 4 に示す.ほとんど Si が検出されて いないことからフラックス塗布の造形では Fe-Al の二元系の IMC が生成していると考えられる. また、IMC 内では Al リッチであることから想定される IMC としては先行研究で確認されている Fe₂Al₅や FeAl₃、Fe₄Al₁₃であると考えられる.

フラックスコアードワイヤを使用し造形を行った試験片の中央部およびエッジ部分における 接合界面における EDX 線分析の結果を Fig. 5 に示す.中央部における分析では IMC において Si の濃化が確認できないことから, Fe-Al の二元系の IMC が成長しているものと考えられる.一方 でエッジ部分では IMC において Si が濃化していることが確認できるこのことから Fe-Al-Si の三 元系の IMC が成長しているものと考えられる.また,各成分の比と先行研究で確認された IMC から Fe_{1.8}Al_{7.2}Si や Fe₂Al₈Si, FeAl_{4.5}Si が生成しているものと考えられる.本分析の結果を用いて 界面における EBSD による分析を試みた.

Fig. 4 EDX line analysis. (Flux-costed)

(a) Center.

(b) Edge.

5.4.2EBSD による分析

ウォータールー大学において, FCW およびフラックスを塗布して作製した試験片の接合界面を 対象に EBSD による分析を試みた.双方の試験体では引張試験においてほぼ同等の強度が確認さ れているが,破面形態に差が見られた.SEM や EDX の観察から FCW を用いた造形では単相の IMC がフラックスを塗布した造形では複数相の IMC が成長していることが予想されるため,双 方の試験体において接合界面に近い箇所と,接合界面から離れた位置において分析を行った.

フラックスを塗布して作製した造形体の接合界面における IMC を EBSD により分析した.分析 結果を Fig. 6 に示す. EBSD の分析結果より接合界面に近い領域では Fe_2Al_5 が生成しており,接 合界面から離れた位置では Fe_4Al_{13} が生成している.この結果は先行研究の分析でも見られている IMC の成長形態である.FCW を用いて作製した造形体の接合界面における IMC を EBSD により 分析した.分析結果を Fig. 7 に示す.どの位置においても $Al_9Fe_2Si_2$ が生成している.

今回の分析では IPF マップや Phase マップを取得することで母相と IMC の成長方向の関係や各 IMC 相の厚さを取得し,強度や IMC の成長に関する議論につなげることを目標としたが,界面 の強度差から OP-S による研磨では界面近傍において良好な菊池パターンを確認することができ なかった. さらなる詳細な観察のためには CP 加工や TEM による観察が必要になると思われる.

(a) 3 μm from the fusion boundary.

(b) $0.2 \,\mu m$ from the fusion boundary.

Fig. 6 SEM image and Kikuchi pattern. (Flux-coated)

(a) 2 μ m from the fusion boundary.

(b) 0.5 μ m from the fusion boundary.

Fig. 7 SEM image and Kikuchi pattern. (FCW)

6. まとめ

今回の海外共同研究においてステンレス-アルミニウム異材積層造形体の界面における IMC の 分析を行った.フラックスを塗布する手法とフラックスコアードワイヤを使用する手法で造形を 行い,Siを含有する FCW では Fe-Al-Si の三元系 IMC が生成しており,Si の有無によって生成す る IMC が異なることが確認された.また,それぞれの試験片を対象にした EBSD による分析から, フラックスを塗布した造形体では接合界面から Fe₂Al₅ が生成しており,接合界面から離れた位置 では Fe₄Al₁₃ が生成していることが確認できた.また,FCW を用いた造形体では Al₉Fe₂Si₂ が生成 していた.今回の分析結果をもとに引張強度試験体の破面観察を行うことで,界面における IMC が接合強度に与える影響を明らかにすることができると考えられる.

最後に、今回の海外共同研究におい海外で研究に取り組む経験はこれからの人生においてとて も貴重な経験となった.言語や文化の大きく異なる国において様々な国籍を有した方々と研究を 行った経験から研究者としてだけではなく一人の人間として成長できたと思う.

7. 参考文献

- Wallerstein D, Salminen A, Lusquiños F, Comesaña R, García JdV, Rodríguez AR, Badaoui A, Pou J. Recent Developments in Laser Welding of Aluminum Alloys to Steel. Metals. 2021; 11(4):622.
- 2) Raghavan, V. Al-Fe-Si (aluminum-iron-silicon). JPE 23, 362 (2002).

8. 謝辞

本研究においご指導を頂きました Prof. Adrian Gerlich,研究面のみならず,現地での生活を助け ていただいた CAMJ 研究室の Dr. Nazmul Huda, Dr. Waqas Muhammad 氏に厚くお礼申し上げます. また,このような機会を与えてくださった広島大学接合プロセス工学研究室の山本元道教授に厚 くお礼申し上げます.最後に,海外共同研究をサポートしていただきました実行委員会の諸先生 方,工学系総括支援室の皆様にお礼申し上げます.