For entrants in AY 2024

Appended Form 1
Specifications for the Major Program
Name of School（Program）〔School of Informatics and Data Science（Informatics and Data S cience）］

| Program
 （Japanese） | name |
| :--- | :--- | 知能科学プログラム

1．Degree to be obtained：
Bachelor of Science in Informatics and Data Science

2．Overview

Because the complexity of economics，society，and the environment is increasing due to rapid globalization，people with the ability to identify problems and find solutions on their own have become indispensable for various organizations．In addition，it is urgently required to develop people capable of efficiently processing and analyzing huge amounts of information and data，so－called＂big data＂，and of developing strategies and plans for their organizations based on evidence．The educational program in the School of Information Science consists of three programs，＂Computer Science Program，＂＂Data Science Program，＂and＂Intelligence Science Program，＂and aims to develop specialists who have profound knowledge and understanding for each specialized area，in addition to the basic knowledge and skills in the three programs．
The data／network environment in contemporary society has been rapidly developed．In particular，the amount of data is swelling rapidly（big data），data is becoming more heterogenic and increasing in variety（qualitative／quantitative data，audio，images，movies，documents，graph structures，etc．），and the travel distance and speed of data are dramatically expanding．In today＇s information science education，it is required to develop various abilities，such as advanced information processing technologies based on basic knowledge of computer science and programming，technologies for collecting，processing，and analyzing various data acquired through specialized knowledge of mathematics and statistics，and advanced technologies that lead to new knowledge creation and innovation to solve problems that mankind has not been able to solve in the past，as represented by artificial intelligence．
However，it is difficult to develop specialists in information science，which is currently required in many fields，by providing only superficial knowledge and skills commonly required in＂Computer Science＂，＂Data Science＂，and＂Intelligence Science＂．This program aims to develop specialists with diversity who can sufficiently exercise their profound understanding and abilities in areas of＂Computer Science＂，＂Data Science，＂and＂Intelligence Science，＂based on a hybrid background across the three major academic fields．
In this program，in the first year，all students take higher mathematics such as algebra and analysis，
information mathematics, probability and statistics, and programming courses as the basis of information science. From the second year, students are assigned to one of three programs according to their interests and aptitudes. In each program, basic specialized subjects essential for professional education are required, and specialized subjects that are assigned to be taken in order to further broaden knowledge are required as elective subjects and free electives. From the third year, students choose a model course that takes into account their own future career development while belonging to each program. In the "Basic Model Course", students aim to learn a wide range of knowledge from basic to advance through taking specialized lecture subjects in information science. In "Integrated Model Course," considering that information science and technology is essential in all academic fields and domains, students are expected to acquire the ability to play an active part in a wide range of fields, not limited to the field of information science, while having an academic background in information science. In "Practical Model Course," students reconsider their university studies and learn the practical knowledge and skills required in industry and society through long-term internships at companies.
All students can learn practical skills required in each program by taking the exercises of information science. In addition, English ability is essential for global human resources, regardless of whether they are highly-skilled professionals who lead their respective fields of specialization or highly-applied professionals who contribute to regional development and industrial development. In the third year, all students take a practical English course, which provides training in technical writing and communication, and cultivates the ability to play an active part in an increasingly globalized international society. Also, from the second year, the program offers practical subjects in collaboration with external experts, cooperating companies, and local governments, and requires all students to take them as elective subjects, aiming to develop human resources with a broad perspective and an interest in research and development trends practiced in society without focusing on specialized fields.
In the fourth year, as a preparation for graduation thesis, students attend seminars provided in each program under the guidance of the faculty members who are engaged in instruction for the thesis. In the seminar, students have the opportunity to familiarize themselves with state-of-art results in the academic field through colloquiums on research papers and textbooks in the specialized area in order to learn and acquire the study methods in each area, the methods for identifying and solving problems, capabilities for literature based research, and presentation and communication skills required for discussion of the research. Students who choose the "Basic Model Course" and the "Integrated Model Course" take a graduation thesis and work on an advanced research theme using the specialized knowledge, skills, and abilities they have acquired through this program. For preparation of the graduation thesis, therefore, they are required to have not only knowledge of the specialized area but also an ability for research planning, a positive attitude, a cooperative mindset, and the capacity for continuous effort. This program educates students to comprehensively improve these capabilities in order to enable them to acquire the ability to identify and solve new problems on their own. Students who choose "Practical Model Course" apply the specialized knowledge, skills, and abilities acquired through this program to practical problem solving by taking the long-term fieldwork courses provided in the third and fourth years, and participate in off-campus research and development projects and survey fieldwork.
3. Diploma policy (policy for awarding degrees and goal of the program)

This school educates students to become specialists with advanced capabilities in each of computer science, data science and intelligence science, as well as the basic abilities that consist of processing techniques based on the information technology, which are the basis of the information-intensive society of today, as well as advanced data analysis capabilities. In addition, this school aims to develop people who are capable of appropriately managing, processing, and analyzing information that has swelled significantly, and become complicated, due to such phenomena as the accumulation of big data, technological breakthroughs in fields related to artificial intelligence (AI), and the development of the IoT.

This school will award the degree of Bachelor of Science in Informatics and Data Science to students who have acquired the knowledge and abilities described below, and earned the required credits defined for the educational course. The diploma policy of the department of information science, faculty of information science, which is common to all program, is as follows.

- To evenly acquire the skills related to the development of an information infrastructure, information processing techniques, and technology for producing new added value through data analysis.
- To acquire the ability to identify and solve new problems on their own by quantitative and logical thinking based on data, diverse perspectives, and advanced skills for information processing and analysis.
- To acquire the ability for reading and logical writing in English, capabilities required for giving a good, clear oral presentation, and documentation and communication skills that contribute to active discussion.
The following are the achievement goals for awarding the specified degree in this program.
Achievement target A. Skills related to the development of an information infrastructure, information processing techniques, and technology for producing new added value through data analysis.
Achievement target B. Ability to identify and solve new problems on their own by quantitative and logical thinking based on data, diverse perspectives, and advanced skills for information processing and analysis.
Achievement target C1. Knowledge and capabilities required for solving problems, while understanding that various problems of human beings, societies, and individuals can be interpreted in different ways according to social conditions, culture, etc.
Achievement target C2. Skills for communication, reading, and writing in English, capabilities required for giving a good, clear oral presentation, and documentation and communication skills that contribute to active discussion.
Achievement target D1. Systematic and deep understanding of both advanced human intelligence and its realization through computation.
Achievement target D2. Abilities of information processing and data analysis which can contribute to the application and development of artificial intelligence, IoT, and so forth.
Achievement target D3. Ability to examine social needs and issues which are interlinked in a complex manner, using a top-down view to solve the problems through diverse perspectives and analytical skills based on a wide range of knowledge related to intelligence science.

Achievement target E. Creative and logical thinking ability for analyzing practical issues and challenges in order to provide rational solutions that match social needs, as well as the capability to realize these solutions.
4. Curriculum policy (policy for arranging and implementing the curriculum)

To enable students to achieve the targets that are defined for the school, the curricula are systematically organized as three educational programs, and implemented as advanced education based on the characteristics of each field. The curriculum policy of the department of information science, faculty of information science, which is common to all programs, is as follows.
In the first academic year, students take such subjects as peace science subjects and foreign language subjects in order to develop deep humanity, flexibility, and profound intelligence to foster the basic qualifications and abilities required for working globally in an international society. In addition, they acquire the knowledge and skills that constitute the basis of the specialized education in the fundamental subjects related to such things as mathematics, data analysis, and programming.

In the second academic year, each student selects one of "the computer science program," "the data science program," and "the intelligence science program." All students acquire the knowledge and skills that form the basis of each program, while taking subjects of programming, fundamental statistics, and information engineering.

In the third academic year, each student selects one of three model courses based on own future carrier development, while taking more specialized subjects on the chosen program. In the Basic Model Course, students aim at learning wide range of knowledge from fundamentals to applications by taking specialized subjects in department of information and data science. In the Integrated Model Course, students will acquire the ability to work in a wide range of fields, not only in the information field, with an academic background in information science. Specifically, students are allowed to take subjects offered in other school of the university as compulsory elective subjects. In the Practical Model Course, students reconsider their university studies and learn the knowledge and skills required in the industrial world through experiences of long-term fieldwork in companies. Regardless of the three model courses, all students take practical English subjects to acquire the ability to play an active role in an increasingly globalized international society.
The seminars in the fourth academic year are required subjects, in which all students learn how to conduct research, discuss, and make advanced presentations. Students who have chosen the Basic Model Course develop the ability to solve highly specialized problems on their own by setting their own themes and completing their graduation theses using the specialized knowledge, skills, and abilities acquired through each program in the school of informatics and data science. Students who have chosen the Integrated Model Course receive guidance for their graduation thesis from faculty members of the school of informatics and other faculty members in other school, and aim to cultivate diverse abilities to utilize knowledge and skills of informatics and data science in various fields. Students who have chosen the Practical Model Course take long-term fieldworks instead of the graduation thesis, and participate in research and development projects and field surveys in companies for eight months to acquire practical skills that can be used immediately in society after graduation.
To enable students to achieve the targets that are defined for the program, the curriculum is organized
and implemented according to the policies described below. Academic achievement is evaluated based on the grade scores for the subjects and the level of achievement against the target defined for this program.

- In the first academic year, students take peace science courses (academic target C1), basic courses in university education (target C 1 and E), common subjects (foreign languages and health and sports courses; target C1 and C2), basic subjects (mathematics, statistics, and programming; target A and B); as liberal arts education subjects and a part of specialized subjects.
- In the second academic year, all students take programming subjects and fundamental subjects in intelligence science, computer science, and data science (achievement target A, B, C1, D1, D2, D) to acquire the knowledge and skills that form the foundation of intelligence science.

In the third academic year, students take practical English subjects (academic target C2) to cultivate the ability to work in an increasingly globalized international society. In addition, students take informatics and data science, exercises (target A, B, D2, D3), thereby acquiring skills related to intelligence science by fostering pragmatic ability in designing machine learning programming and practical ability in media processing analysis based on real data through. Furthermore, in the intelligence science program, students take advanced subjects of artificial intelligence and machine learning, natural language processing, visual computing, human computer interaction, and others, to acquire the professional ability required in artificial intelligence era.

- In the fourth academic year, students prepare their graduation thesis or engage in long-term fieldwork, using capabilities corresponding to the achievement targets A to E that they have acquired in the intelligence science program. The thesis or fieldwork is evaluated against the achievement targets A to E based on its degree of achievement and the presentation given at the presentation assembly.

5. Start time and acceptance conditions

In this program, students are assigned to a program at the end of the first year, and at the end of the second year, students are required to choose one of the following model courses: "Basic Model Course", "Integrated Model Course" or "Practical Model Course".
6. Obtainable qualifications

Educational personnel certification (Information teaching and Mathematics) is awarded to students who earn the required credits.
7. Class subjects and their contents

* For class subjects, refer to the subject table in Attachment 1. (The subject table is to be attached.)
* For the details of the class subjects, refer to the syllabus that is published each academic year.

8. Academic Achievement

The evaluation criteria are specified for each evaluation item for academic achievement, and the achievement level against the criteria is designated at the end of the semester.

The evaluation score for each evaluation item is converted to a numerical value ($\mathrm{S}=4, \mathrm{~A}=3, \mathrm{~B}=2$, and $\mathrm{C}=1$) and the evaluation standard for academic achievement, from when the student entered the university to the end of the last semester, is determined using these values while applying weightings. The evaluation standards consist of three levels, i.e. Excellent, Very Good, and Good.

Academic achievement	Evaluation standard
Excellent	$3.00-4.00$
Very Good	$2.00-2.99$
Good	$1.00-1.99$

Achievement evaluation	Numerical conversion
S (Excellent: 90 or more points)	4
A (Very good: 80-89 points)	3
B (Good: $70-79$ points)	2
C (Passed: $60-69$ points)	1

* Refer to the relationship between evaluation items and evaluation criteria described in Attachment 2.
* Refer to the relationship between evaluation items and class subjects described in Attachment 3.
* Refer to the curriculum map in Attachment 4.

9. Graduation thesis (graduation research) (meaning, student allocation, timing, etc.)

- Meaning

Graduation Thesis is a comprehensive subject in which students utilize the specialized knowledge, skills, and abilities that they have acquired in the Intelligence Science Program to pursue an advanced research topic. To take this subject, therefore, they are required to have not only knowledge of the specialized area but also an ability for research planning, a positive attitude, a cooperative mindset, and the capacity for continuous effort. This program educates students in Basic Model Course or Integrated Model Course to comprehensively improve these capabilities in order to allow them to acquire the ability to identify and solve new problems on their own. Detailed objectives are as follows:

1. To acquire the ability to develop a research plan for their research objective on their own, and to carry out their research according to that plan.
2. To develop skills for collecting materials related to the research objective, understanding the objective, and identifying problems.
3. To develop capabilities for analyzing problems related to the research objective and providing solutions that match social needs.
4. To develop skills required for research activity related to reading, writing, and searching for information in English.
5. To develop documentation skills for organizing research results and describing the meaning and efficacy of the obtained results in logical and consistent text.
6. To develop presentation skills for delivering the research results clearly and orally, and communication skills for active discussion.

On the other hand, Students in Practical Model Course take the "Long-term fieldwork I" and "Long-term fieldwork II" instead of the graduation thesis, and participate in research and development projects and field surveys in companies which are specified by the department. This course cultivates the ability to understand practical issues that are being addressed in the real world and to solve those issues. Detailed objectives are as follows:

1. To acquire the ability to understand a given research question and to carry out their research according to research plan specified in the project.
2. To develop the knowledge and skills for solving the problems by understanding the materials and methodologies related to the research problem.
3. To develop capabilities for analyzing problems related to the research objective and providing solutions that match project needs.
4. To develop skills required for research activity related to reading, writing, and searching for information in English.
5. To develop documentation skills for organizing research results and describing the meaning and efficacy of the obtained results in logical and consistent text.
6. To develop presentation skills for delivering the research results clearly and orally, and communication skills for active discussion.

- Student allocation method and timing

Requirements for starting the research for graduation thesis are defined in the Student Handbook.
Students in their fourth or senior year, who satisfy the requirements for starting the research for their graduation thesis, are allocated to a laboratory according to their wishes. The allocation method will be explained to the students at a briefing session that will be held before the allocation process. For students to be allocated to laboratories, an assembly and/or open laboratory event is held in February or March to show the details of research topics.

10. Responsibility

(1) Responsibility for PDCA (plan, do, check, and act) cycle

This program is executed by faculty members who support the education in the School of Informatics and Data Science. The dean of School of Informatics and Data Science takes on the responsibility for implementation of the program. It is mainly the academic affairs committee of the Informatics and Data Science Program and academic affairs members elected by the program that reviews and makes decisions related to the processes of the PDCA cycle (plan, do, check, and act) in the council of the School of Informatics and Data Science (this is held, in principle, on the first Thursday of every month). In some cases, a working group may be organized according to direction by the dean of School in order to intensively work on a case. When it is required to consider and take some action in either of the program, members which are mainly engaged in the concerned course will take responsibility. In such a case, the dean of the school designates the person in charge.
(2) Evaluation of the program

- Perspectives for evaluation of the program
- Are class subjects arranged appropriately, while considering the aims of study and education in this program? Are the contents of classes appropriate?
- Have students, on average, achieved the level that is required of them?
- Is the system for achieving an upward spiral in the program functioning according to an appropriate cycle?
- Evaluation method
- Each subject in the program is evaluated based on student evaluation of the classes and achievement evaluation results.
- For evaluation of the upward spiral in quality of the program, questionnaires for students are conducted in an appropriate cycle, and the opinions of ex-students and companies are collected.
- Policy and method for feedback to students
- For individual classes, the faculty member who is in charge of the class makes comments on the evaluation of the class and the achievement evaluation results.
- Actions taken, such as changes to the lecture and program structure, are published on the web site of School of Informatics and Data Science and/or another medium stating also the reason for the changes.

Sheet 1

Table of Registration Standards for Liberal Arts Education Subjects Informatics and Data Science

Subject Type					Required No. of Credits	Class Subjects, etc.	No. of Credits	Type of Course Registration	Year in Which the Subject is Taken**The lower figure means semester)(Note 1)																
					1st year				2nd year				3 rd year				4th year								
					1				2	3	4	1	2	3	4	1	2	3	4	1	2	3	4		
	Peace Science Courses					2	Peace Science Courses	2	Compulsory elective		\bigcirc														
	BasicCourses inUniversityEducation	Introd	ction to	niversity Education		2	Introduction to University Education	2	Required	()															
		Introdu	ctory Sem	nar for First-Year Students	2	Introductory Seminar for First-Year Students	2	Required	()																
		Advanc	ed Semin		0		1	3																	
			Ar	Courses	4	Courses in Arts and Humanities/Social Sc (Note 6)	2	Compulsory elective		\bigcirc		\bigcirc		\bigcirc		\bigcirc									
					4	Courses in Natural Sciences	2	Compulsory elective	\bigcirc		\bigcirc		\bigcirc		\bigcirc										
						Basic English UsageI	1	Required	(
				Basic English Usage	2	Basic English UsageII	1																		
				Communication I	2	Communication IA	1	Required	©																
				Communication 1	2	Communication IB	1		()																
						Communication IIA	1	Required																	
				Communication II	2	Communication IIB	1																		
			Initial Foreign Languages (Select one language from German, French, Spanish, Russian, Chinese, Korean and Arabic)		2	Basic Foreign Language I	1	Compulsory elective	\bigcirc																
					2	Basic Foreign Language II	1			\bigcirc															
		Information and Data Science Courses			4	Introduction to Information and Data Sciences	2	Required		(0)															
					Ground zero programming	2				©															
		Heal	th and	Sports Courses		2		1or 2	Compulsory elective	\bigcirc		\bigcirc													
		Socia	Coop	ration Courses	0		1or 2	\cdots																	
	Basic Subjects				10	Elements of Calculus (Note 45)	2	Compulsory elective	\bigcirc																
					Seminar in Basic Mathematics I (Note 5)	1				\bigcirc															
					Seminar in Basic Mathematics II(Note 5)	1					\bigcirc														
					CalculusI	2			()																
					CalculusII	2				(0)															
					Linear AlgebraI	2		()																	
					Linear AlgebraII	2				(0)															
	No. of Credits Required for Graduation					38																			

Note 1: If a student failed to earn the credit in the term or semester indicated with the mark "○" or "○" in the column of "Academic year", it is allowed to take the subject in a following term or semester. It is required to confirm the semester in which the subject is provided in the class schedule for liberal arts education subjects that is published for every academic year, because some subjects might be provided in a term or semester other than that which is shown in this document.

Note 2: The credit for "Field Research in the English-speaking World" and that for "Online English Seminar I•II•III", that are earned through a program of self-study, are not accepted as the credit for graduation. However, a credit for foreign language study abroad might be accepted as that for "Basic English Usage I", "Basic English Usage II", or "Basic English Usage III" based on advance application. For the details, refer to the description regarding English subjects in liberal arts education in the Students Handbook.

Note 3:The credits of Area course and Social Cooperation course in English, which are gained more than required, could be counted as credits of English subjects.

Note 4:Achievement in Foreign Languages skill test might be accepted as a credit. For further details, refer to "Foreign Languages" and "Credit based on Achievement in Foreign Language Skill Test" in the section
for liberal arts education.
Note 5: Students by the type A examination are required to take the subject "Elements of Calculus." Students by the type B examination are required to take the subjects "Seminar in Basic Mathematics I" and "Seminar in Basic Mathematics II". (It is desirable that also about students by the type A examination take the subjects "Seminar in Basic Mathematics I" and "Seminar in Basic Mathematics II".)

Note 6 : In order to acquire the license of education personnel, students need to take two credits in "Japanese Constitutional Law."

Basic Specialized Subjects for Imformatics and Data Science

Academic Achievement in Educational Program for the Computer Science Program

Academic Achievements			Evaluation Criteria		
		Evaluation Items	Excellent	Very Good	Good
$\begin{aligned} & 80 \\ & o \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(1)	C1. Knowledge and ability to work on problem-solving after understanding that various issues existing in human beings, society, and individuals can be interpreted in multiple ways depending on social conditions and culture.	Have sufficient knowledge to fully understand the various problems and diversity of human beings, society, and individuals and how to address them.	Have standard knowledge for understanding various problems and the diversity of human beings, society, and individuals to a standard level and how to address them.	Understand various problems and diversity of human beings, society, and individuals to the minimum extent, and have the minimum knowledge to address them.
	(2)	D1. Knowledge and ability to understand the theoretical framework underlying computer science and to collect and process high-dimensional data through full use of information processing technology based on scientific logic. \square	Have sufficient knowledge to understand the theoretical framework of computer science and to collect and process high-dimensional data by making full use of information processing technology.	Have a standard understanding of the theoretical framework of computer science and the standard knowledge for collecting and processing highdimensional data by making full use of information processing technology.	Understand the theoretical framework of computer science to a minimum extent, and have the minimum knowledge to collect and process high-dimensional data by making full use of information processing technology.
	(1)	A. Information infrastructure development technology, information processing technology, technology that analyzes data and creates new added value.	Have sufficient knowledge to fully acquire and utilize information infrastructure development technology, information processing technology, and technology that creates new added value by analyzing data.	Have standard knowledge to learn and utilize information infrastructure development technology, information processing technology, and technology that creates new added value by analyzing data.	Have minimum knowledge to learn and utilize information infrastructure development technology, information processing technology, and technology that creates new added value by analyzing data to the minimum extent.
	(2)	B. Ability to identify new problems independently and solve them through quantitative and logical thinking based on data, multifaceted perspectives, and advanced information processing and analysis.	Have sufficient knowledge to identify new problems independently and acquire sufficient abilities to solve problems through quantitative and logical thinking based on data, multifaceted perspectives, and advanced information processing and analysis.	Have standard knowledge to identify new problems independently and acquire standard abilities to solve problems through quantitative and logical thinking based on data, multifaceted perspectives, and advanced information processing and analysis.	Have minimum knowledge to identify new problems independently and acquire a minimum ability to solve problems through quantitative and logical thinking based on data, multifaceted perspectives, and advanced information processing and analysis.
	(3)	D3. Knowledge of hardware and software and programming ability to process data efficiently.	Have to fully acquire and utilize the knowledge of hardware and software and the programming ability to process data efficiently.	Have to acquire and utilize the knowledge of hardware and software and the programming ability to process data efficiently to the standard level.	Have to acquire and utilize the knowledge of hardware and software and the programming ability to process data efficiently to the minimum level.
	(1)	C2. English conversation, reading, and writing skills are necessary for conducting research, good oral presentation skills, documentation skills for open discussion, and communication skills.	Have sufficient knowledge to fully acquire and utilize the communication, presentation, and documentation abilities related to English necessary for conducting research efficiently	Have standard knowledge to acquire and utilize the communication, presentation, and documentation abilities related to English necessary for conducting research to the standard level.	Have minimum knowledge to acquire and utilize the communication, presentation, and documentation abilities related to English necessary for conducting research to the minimum level.
	(2)	D2. Ability to derive optimal system solutions based on abundant cutting-edge information technologies for cross-sectoral issues in a diversified and complicated information society.	Have to acquire and utilize sufficient ability to guide optimal system solutions based on cutting-edge information technology for cross-sectoral issues in the information society.	Have to acquire and utilize standard abilities to guide optimal system solutions based on cutting-edge information technology for cross-sectoral issues in the information society.	Have to acquire and utilize the minimum ability to guide the optimum system solution based on the latest information technology for cross-sectoral issues in the information society.
	(3)	E. Creative and logical thinking ability to analyze practical problems/issues and derive rational solutions that meet the demands of society, and the ability to realize these solutions.	Have to acquire and utilize creative and logical thinking ability and sufficient ability to realize this solution to analyze practical problems and derive rational solutions that meet the demands of society.	Have to acquire and utilize creative and logical thinking ability and standard ability to realize this solution to analyze practical problems and derive rational solutions that meet the demands of society.	Have to acquire and utilize creative and logical thinking ability and the minimum ability to realize this solution to analyze practical problems and derive rational solutions that meet the demands of society.

Placement of the Liberal Arts Education in the Major Program

The liberal arts education in this program aims to build the academic foundation required for specialized education. Students take such subjects as a foreign language and disciplinary subjects to develop deep humanity, flexibility, and profound intelligence to foster the essential qualifications and abilities req
fundamental subjects such as Mathematics and Statistical data analysis.

Sheet 3
Relationships between the Evaluation Items and Class Subjects

Subject Type	Class Subjects	Credits	Grade	Evaluation items																
				Knowledge and Understanding				Abilities and Skills						Comprehensive Abilities						
				(1) C 1		(2) D1		(1) A		(2) B		(3) D3		(1) C 2		(2) D2		(3) E		
				Weighte devulue of of evauati on items on the subject	$\left\{\begin{array}{l} \text { Weighte } \\ \text { d values } \\ \text { of } \\ \text { evaluati } \\ \text { on items } \end{array}\right.$	Weighte d values of evauati onitem ont inhe subject	Weighte d values of evaluati on items	Weighte d values of evaluati on item ont inhe subject	$\left.\begin{aligned} & \text { Weighte } \\ & \text { d d values } \\ & \text { of } \\ & \text { evaluati } \\ & \text { on items } \end{aligned} \right\rvert\,$	Weighte d values of evauati en items on in the subject	$\begin{gathered} \text { Weighte } \\ \text { d values } \\ \text { of } \\ \text { evaluati } \\ \text { on items } \end{gathered}$	Weighte dvalues of evaluati on item ont sube suject	$\left\{\begin{array}{c} \text { Weighte } \\ \text { d values } \\ \text { of } \\ \text { evaluati } \\ \text { on items } \end{array}\right.$	Weighte d values of evavatit ovitems on the in the subject	$\left\|\begin{array}{l} \text { Weighte } \\ \text { dvalues } \\ \text { ofaluati } \\ \text { evaluat } \\ \text { on items } \end{array}\right\|$	Weighte d values of evaluat evitems on tems in the subject	$\begin{aligned} & \begin{array}{l} \text { Weighte } \\ \text { dvalues } \\ \text { ofvali } \\ \text { evaluat } \\ \text { on items } \end{array} \end{aligned}$	Weighte d values of evaluat ovitems on the in the subect	$\begin{gathered} \text { Weighte } \\ \text { devalue } \\ \text { of } \\ \text { evaluati } \\ \text { en items } \end{gathered}$	
Liberal Arts Eduation	Introduction to University Education	2	1st grade	100	1															100
Liberal Ats Eduation	Introductory Seminar for First-Year Students	2	1st grade	25	1			25	1	25	1							25	1	100
Liberal Ats Eduation	Peace Science Courses	2	1st grade	100	1															100
Liberal Ats Eduation	Area Courses	8	1st grade	100	1															100
Liberal Ats Eduction	Basic English Usage I	1	1st grade											100	1					100
Liberal Ats Eduation	Basic English Usage II	1	1st grade											100	1					100
Liberal Ats Eduction	Communication I A	1	1st grade											100	1					100
Liberal Ats Eduation	Communication I B	1	1st grade											100	1					100
Liberal Ats Eduction	Communication II A	1	1st grade											100	1					100
Liberal Ats Eduation	Communication II B	1	1st grade											100	1					100
Liberal Ats Eduation	Basic Foreign Languages I	2	1st grade											100	1					100
Liberal Arst Eduction	Basic Foreign Languages II	2	1st grade											100	1					100
Liberal Ats Education	Introduction to Information and Data Sciences	2	1st grade					50	1	50	1									100
Liberal Arst Eduction	Ground zero programming	2	1st grade					50	1	50	1									100
Liberal Ats Eduation	Health and Sports Course	2	1st grade	100	1															100
Liberal Ats Eduction	Elements of Calculus	2	1st grade					50	1	50	1									100
Liberal Ats Education	Seminar in Basic Mathematics I	1	1st grade					50	1	50	1									100
Liberal Ats Eduction	Seminar in Basic Mathematics II	1	1st grade					50	1	50	1									100
Liberal Ats Education	Calculus I	2	1st grade					50	1	50	1									100
Liberal Ats Eduction	Calculus II	2	1st grade					50	1	50	1									100
Liberal Ats Education	Linear Algebra I	2	1st grade					50	1	50	1									100
Liberal Ats Eduction	Linear Algebra II	2	1st grade					50	1	50	1									100
Specilized Education	Discrete Mathematics I	2	1st grade					50	1	50	1									100
Speciaized Education	Discrete Mathematics II	2	1st grade					50	1	50	1									100
Specialized Education	Programming I	2	1st grade					50	1	50	1									100
Specialized Education	Programming II	2	1st grade					50	1	50	1									100
Speciaized Education	Programming III	2	2nd grade					50	1	50	1									100
Specialized Education	Programming IV	2	2nd grade					50	1	50	1									100
Speciaized Education	Theory of Automata and Languages	2	2nd grade			34	1	33	1	33	1									100
Specialized Education	Digital Circuit Design	2	2nd grade					33	1	33	1	34	1							100
Specialized Education	Programming Languages	2	2nd grade					33	1	33	1	34	1							100
Speciaized Education	Algorithms and Data Structures	2	2nd grade					33	1	33	1					34	1			100
Specialized Education	Fundamentals of Probability Theory	2	1st grade					50	1	50	1									100
Speciaized Education	Inferential Statistics	2	2nd grade			34	1	33	1	33	1									100
Speciaized Education	Linear Regression Model	2	2nd grade			34	1	33	1	33	1									100
Speciaized Education	Statistical Test	2	2nd grade			34	1	33	1	33	1									100
Specialized Education	Stochastic Modeling	2	2nd grade									100	1							100
Speciilized Eduation	Numerical Computation	2	2nd grade													100	1			100
Specialized Education	Mathematical Programming	2	2nd grade													100	1			100
Speciilized Eduation	System Optimization	2	2nd grade													100	1			100
Specialized Education	Mathematical Analysis	2	2nd grade			50	1	50	1											100
Specialized Education	Multivariate Analysis	2	2nd grade			100	1													100
Speciaized Education	Basic and practice in Categorical data analysis	2	2nd grade													100	1			100
Specialized Education	Mechanism how programs run on computer	2	2nd grade									100	1							100
Speciaized Education	Operating Systems	2	2nd grade									100	1							100
Specialized Education	Databases	2	2nd grade			100	1													100
Speciaized Education	Information Theory	2	2nd grade			100	1													100
Specialized Education	Practical English I	1	3rd grade											100	1					100
Speciaized Education	Practical English II	1	3rd grade											100	1					100

Curriculum Map of Intelligence Science Program

Academic Achievement Evaluation Itemas	1st grade		2nd grade		3rd grade		4th grade	
	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
(1) C1. Knowledge and capabilities required for solving problems, while understanding that various problems of human beings, societies, and individuals can be interpreted in different ways according social conditions, cultures, etc.	(4T) ntroduction to University Edeation(0)		(TT)Information Processing and Industry(0)	(37)Data Science and Management(O)				
					(2T)Research Project (O)			
	(1T)Area courses(O)							
	${ }^{(17)}$ Health and Sports Courses(0)							
	(2T)Peace Science Courses(0)							
(2) D1. Knowledge and skills required for understanding the theoretical system of statistics and data analysis, and for precisely and efficiently analyzing qualitative/quantitative information in big data.			(1T)Inferential Statistics(0)	(3T)Multivariate Analysis(O)	(1T)Data Mining(\bigcirc)		(1T)Intelligence Science Seminar I(O)	
			(2) Linear Regression Model(®)	(4T)Databases(○)	(2T)Natural Language Processing(O)		(2T)Intelligence Science Seminar II())	
			(17)Thery of Automata and Langaages(0)	(3T)Machine Learning(O)	(1T)Theory of Computing(\triangle)			
			(1T)Information Theory(O)		(2T)Reinforcement Learning(O)			
			(2T)Statistical Test(O)		(1T)Neural Networks(O)			
			(2T)Mathematical Analysis(O)		(2T)Semiotic AI(O)			
			(17)ntroduction to Atrificial Ineligigence(0)					
(1) A. Skills related to the development of an information infrastructure, information processing techniques, and technology for producing new added value through data analysis.	(1T)Elements of Calculus(O)	(3T)CalculusII(O)	ProgrammingIII (O)	ProgrammingIV (0)				
		(3T)Linear AlgebraII(®)	(1TTHeery of Atumata and Languages(0)	(3T)Digital Circuit Design (O)				
	(2T)CalculusI(○)	${ }^{\text {4T)Seminar in Basic Mathematics I(O) }}$	(1T)Inferential Statistics(O)	(37) Algorithms and Data Structures(®)	(1T)Data Mining (O)	(4T)Big Data (O)		
	(1T)Linear AlgebraI(0)	(3T)Seminar in Basic Mathematics I(O)	(2T)Statistical Test(O)	(4T) Programming Languages (0)	(1T)Theory of Computing(Δ)	(4T)Computer Network(O)		
		(3T)Ground zero programming(0)	(2)Linear Regression Model(0)	(3T)Machine Learning (O)	(2T)Nonparametric analysis (Δ)	(3T)Biological Information Processing(0)		
	(2T)Discrete Mathematics I(®)	(3T)Discrete Mathematics II (®)	(2T)Mathematical Analysis(O)		(1T)Behaviormetrics(\triangle)	(4T)Advanced Programming (O)		
	Programming I(O)	Programming II (@)			(2T)Bioinformatics (O)	(3T)Mathematical Statistics (Δ)		
		(47) Fundamentals of Probaility Theory(0)			(1T)Sparse Estimation(O)			
					(1T)Bayesian Statistics (O)			
(2) B. Ability to identify and sol new problems on their own by quantitative and logical thinkin based on data, diverse perspectives, and advanced skil for information processing and analysis.	(1T)Elements of Calculus(O)	(3T)Calculus II (O)	ProgrammingIII (O)	ProgrammingIV (O)				
		(3T)Linear Algebra II (0)	(1TTHeory of Automata and Languages(0)	(3T)Digital Circuit Design (0)	Crlinormaisis and datas siemee, Eerrise $I(0)$	4TTMnormatis and datas siemee Eserrise V(0)		
	(2T)Calculus I (0)	(3)Seminar in Mathematics I (0)	(1T)Inferential Statistics(®)	(37)Algorithms and Data Structures(0)	(1T)Speech Recognition (O)	(4T)Text Mining (O)		
	(1T)Linear Algebra I (0)	(47)Seminar in Mathematics I (0)	(2T)Statistical Test(O)	(4T)Programming Languages (0)	(2T)Decision-Making (\triangle)	(3T)Biological Information Processing(0)		
		(3) Ground zero programming(0)	(2T)Linear Regression Model(®)		(2T)Bioinformatics (O)	(4T)Advanced Programming (0)		
	(2T)Discrete MathematicsI(O)	(3T)Discrete MathematicsII(O)			(1T)Sparse Estimation(O)	(3T)Mathematical Statistics (Δ)		
	Programming I (O)	Programming II (O)			(1T)Neural Networks(O)			
		(47) Fundamentals of Probability Theory(0)			(1T)Bayesian Statistics(O)			
					(2T)Semiotic AI (O)			
				(3T)Digital Circuit Design(0)	arinnormaice and data sieiene, Exeresie 1 (0)	(3T)Visual Computing(O)	(1T)Intelligence Science Seminar I(O)	

Academic Achievement Evaluation Itemas		1st grade		2nd grade		3rd grade		4th grade	
		Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
	(3)D2. Ability to take charge of organizational strategy and planning based on statistical evidence by making full use of a wide range of knowledge and techniques in data science.				(3T)Operating Systems(O)		(37) Human Computer Interaction(O)	(2T)Intelliggence Science Seminar II())	
					(4T)Programming Languages (O)	(2T)Image Processing(O)	(4T)Computer Network(O)		
					(4TMeechanism how progerams run on ompupuero)	(2T)Natural Language Processing(O)	(3T)Time Series Analysis(Δ)		
					(4T)Stochastic Modeling (Δ)	(1T)Digital Signal Processing(O)	(3T) Paralle a and Distributed Processing (Δ)		
						(1T)Speech Recognition (O)	(4T)Text Mining(O)		
						(2T)Reinforcement Learning (0)	(4T)Introduction to IoT (O)		
						(2T)Decision-Making (\triangle)	(4T)Quality Management (Δ)		
						(2T)Bioinformatics (O)			
						(2T)FinTech (\triangle)			
	(1) C2. Skills for communication, reading, and writing in English, capabilities required for giving a good, clear oral presentation, and documentation and communication skills that contribute to active discussion.	Basic English Usage I (0)	Basic English Usage II (0)			(1T)Practical English I(O)	(3T)Practical English II (0)		Graduation Thesis(O)
		Communication I A (0)	Communication II A (0)						
		Communication I B (0)	Communication II B(0)						
		(17) Basic Foreign Languages I (0)							
		(2T) Basic Foreign Languages I (0)							
	needs and issues that are intertwined in a complex m and to solve issues with quantitative and logical th based on data, a multiface perspective, and advanced information analysis abilit			(17)Mathematical Programming(O)	(3T) Algorithms and Data Structures (®)	(2T)Information Society and Security(0)		(1T) Intelligence Science Seminar I(0)	
					(3T)System Optimization(O)	(2T)Econometrics(\triangle)		(2T)Intelligence Science Seminar II())	
					(4T)Numerical Computation(O)	(2T)Software Management (Δ)	(4T)Big Data (O)		
						(1T)Survey design(\triangle)	(4T)Stochastic Processes (\triangle)		
						(2T)Software Engineering I(O)	(4T)Financial Engineering(Δ)		
						(2T)FinTech (\triangle)	(4T)Biostatistics (\triangle)		
							(3T)Software Engineering II (Δ)		
							(4T)Introduction to IoT (O)		
							(3T)Biological Information Procossing(0)		
							(4T)Quality Management (Δ)		
	(3) E. Creative and logical thinking ability for analyzing practical issues and challenges in order to provide rational solutions that match social needs, as well as the capability to realize these solutions.						Long-term Fieldwork I (0)		Graduation Thesis(0)
									Long-term Fieldwork II(®)

