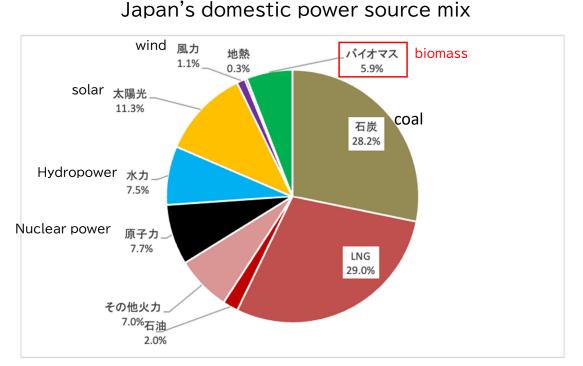
広島大学バイオマスイブニングセミナー

小規模分散型バイオマス熱電利用の可能性

Possibility of small-scale distributed biomass heat and power utilization

2025年4月23日

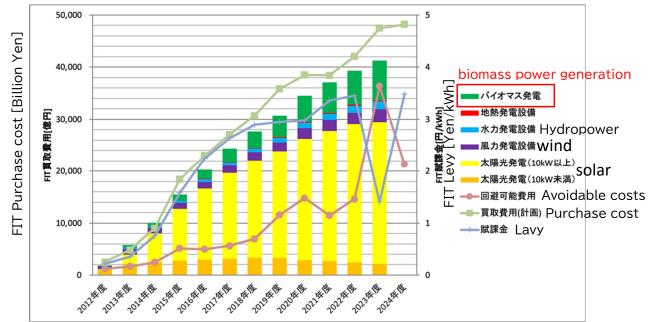

広島大学A-ESG科学技術研究センター 客員教授 岡村 幸壽 (Yukio Okamura)

広島大学A-ESG科学技術研究センター

Table of contents

- 1. Current status and challenges of biomass power generation in Japan
- 2. Small and medium-sized biomass power generation facilities
- 3. Possibility of small-scale distributed biomass heat and power utilization
- 4. Conclusion

1. Current status and challenges of biomass power generation in Japan



Japan's domestic power source mix (annual power generation in FY2023) Source: Agency for Natural Resources and Energy, "Electricity Survey Statistics," etc.

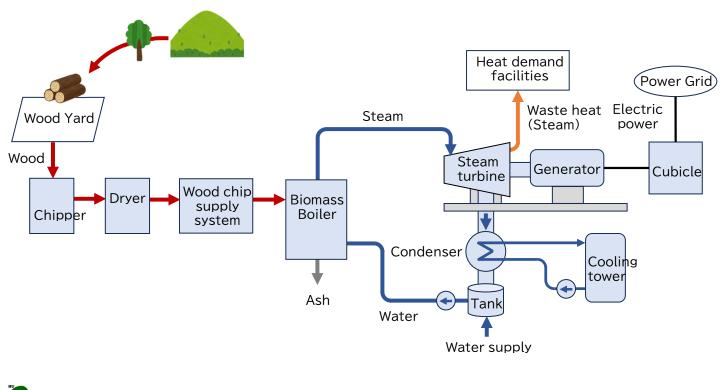
広島大学A-ESG科学技術研究センター

1. Current status and challenges of biomass power generation in Japan

Japan's domestic power source trends of renewable energy power generation facilities


Trends in the annual amount of renewable energy power generation facilities installed under the FIT system

Source: Agency for Natural Resources and Energy, "Electricity Survey Statistics," etc.



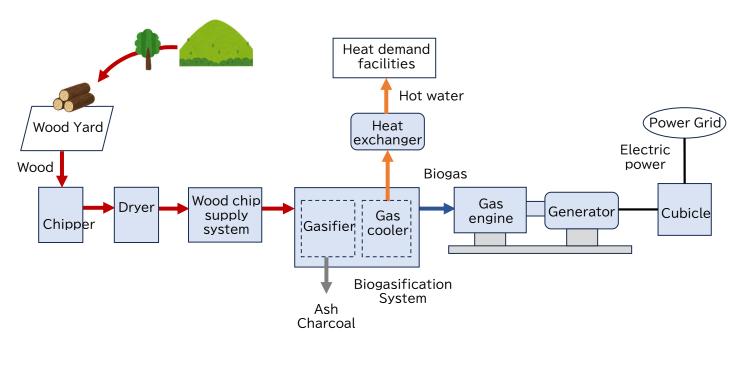
()

Japan's domestic power source trends of renewable energy power generation facilities

Basic configuration of wood biomass power generation (Steam generation)

広島大学A-ESG科学技術研究センター

()


2. Small and medium-sized biomass power generation facilities

Example of a steam biomass power plant

Maniwa Biomass Power Plant

Item	Specification	Remarks
Power generation output capacity	10,000kW	using unused wood, lumber and scrap bark
Fuel used	110,000t/year	planned usage: 148,000t/year
Operation rate	103%	For rated output
Power generation	74,200MWh	
Planned operating days	330 days/year	
Power selling method	FIT	32yen/kWh(Unused wood) 24yen/kWh(general wood)
Sales	2.31 billion yen	
Fuel Purchase	1.42 billion yen	Approximately
CO ₂ reduction	67,000t-CO ₂	54,000t-CO ₂ (Power plants)

Basic configuration of wood biomass power generation (Gasification)

広島大学A-ESG科学技術研究センター

()

2. Small and medium-sized biomass power generation facilities

Example of a Gasification biomass power plant

Tsuwano Biomass Power Plant

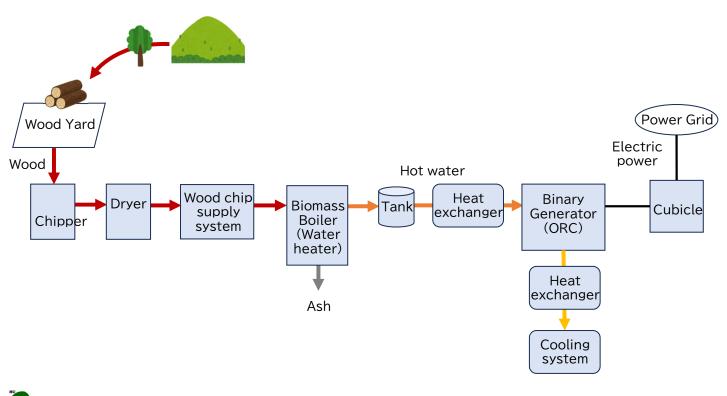
Item	Specification	Remarks
Power output capacity	480kW	Heat:1,200kW
Fuel used	6,500t/year	nearby areas
Power generation	3,740MWh	
Facilities	Volter40×12	Chip Dryer:T4 Plus

Azumino Biomass Power Plant

Item	Specification	Remarks
Power output capacity	1,960kW	Heat:3,800kW
Fuel used	25,000t/year	nearby areas
Power generation	15,000MWh	
Power selling method	FIT	40yen/kWh
Facilities	spanner	49kW×40

Example of a Gasification biomass power plant

Uchiko Ryuow Biomass Power Plant


Item	Specification	Remarks
Power output capacity	330kW	Heat:520kW
Fuel used	3,600t/year	Wood pellets made from unused wood
Annual operating rate	89%	Approximately
Power generation	2,570MWh	
Power selling method	FIT	40yen/kWh
Heat selling	Hot water supply	Nearby facilities
Facilities	Burkhardt	(V3.9+ECO165HG)×2

広島大学A-ESG科学技術研究センター

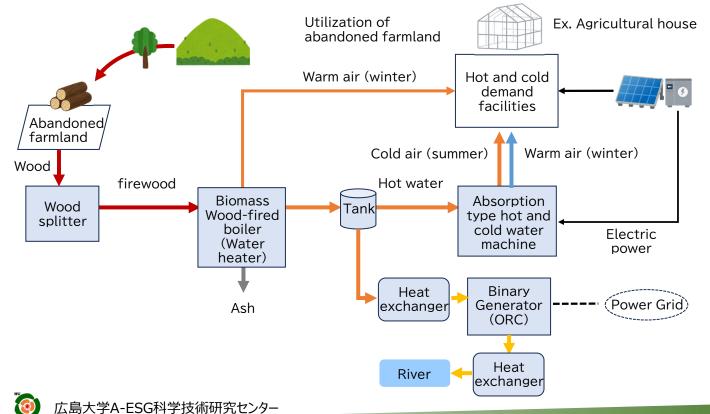
()

2. Small and medium-sized biomass power generation facilities

広島大学A-ESG科学技術研究センター

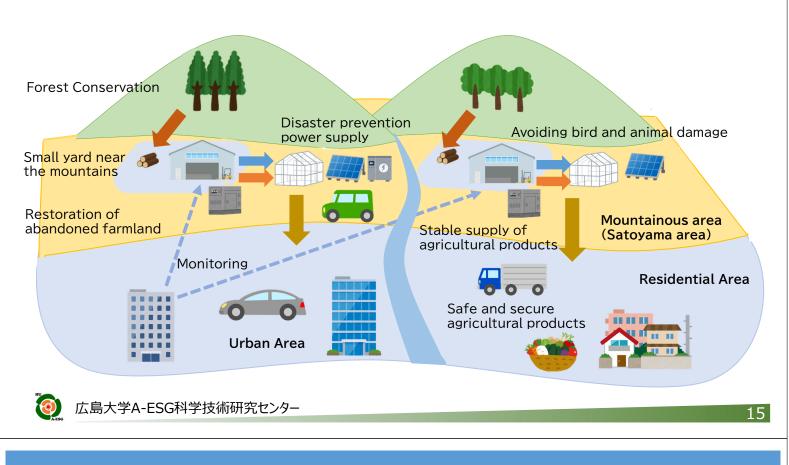
Example of a Binary biomass power plant

Uchiko Biomass Power Plant


Item	Specification	Remarks
Power output capacity	1,115kW (CHP:990kW +Binay:125kW)	Heat:1,560KW (for Binary) (Gasifier:420kW +CHP:1,140kW)
Fuel used	5,700t/year	Wood pellets
Power generation	8,830MWh	8,110MWh (Sending end)
Annual operating days	330days	
Power selling method	FIT	40yen/kWh
Facilities	Burkhardt	Gasification Unit×6 CHP Unit×6 Binary×1
Binary system	Thermapower ™	Thermapower ORC 125XLT

広島大学A-ESG科学技術研究センター

(1)


3. Possibility of small-scale distributed biomass heat and power utilization

Small-scale distributed heat and electricity utilization system using wood biomass

3. Possibility of small-scale distributed biomass heat and power utilization

Small-scale heat utilization system grand design of wood biomass use

4. Conclusion

- > Wood biomass power generation systems include steam turbines and gasification. Steam turbines are mainstream with over 2000kW, and many plants are used only for power generation, so steam turbines are unsuitable for small to medium-sized scale.
- Gasification is suitable for small to medium-sized scale plants under 2000kW for power generation and heat cogeneration, but requires high quality wood fuel, so is not very suitable for Japan's woodland forests.
- To revitalize Japan's mountainous areas where abandoned farmland is increasing, small-scale distributed biomass thermoelectric use is suitable, using hot water from a simple wood-fired boiler as a heat source.
- As a Satoyama industry that can adapt to climate change, we believe that application of cold and hot heat to greenhouse agriculture is promising.