Entrance Examination Booklet (General Selection)

			(20	25年8月28日実施	/ August 28, 2025)
試験科目	応用化学(専門科目I)	プログラム	/ - / 14 1 - 4	受験番号	
Subject	Applied Chemistry I	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

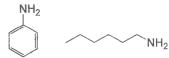
試験時間:9時00分~12時00分 (Examination Time: From 9:00 to 12:00)

受験上の注意事項

- (1) 問題用紙兼解答用紙が表紙を含み8枚あります。
- (2) この表紙を含むすべての問題用紙兼解答用紙に、受験番号を記入してください。
- (3) これは問題用紙と解答用紙が合冊されたものです。解答は指定された箇所に記入してください。
- (4) 解答が書ききれないときは、同じ用紙の裏面を利用しても構いません。ただし、その場合は「裏に続く」などと裏面に記載したことが分かるようにしておくこと。
- (5) 全間に解答しなさい。
- (6) 貸与された計算機(電卓)を使用しても差し支えない。
- (7) 質問あるいは不明な点がある場合は手を挙げてください。

Notices

- (1) There are 8 problem and answer sheets including a front sheet.
- (2) Fill in your examinee's number in the specified positions in this cover and each problem and answer sheet.
- (3) This examination booklet consists of problem sheets and answer sheets. Answer the problems in the specified position.
- (4) If the space is exhausted, use the reverse side of the sheet and write down "to be continued" on the last line of the sheet.
- (5) Answer all the problems.
- (6) You may use the provided calculator if you need.
- (7) Raise your hand if you have any questions.


(2025年8月28日実施 / August 28, 2025)

	(2025 十 6 万 26 日 关地 / August 26, 2025)										
試験科目	応用化学(専門科目I)	プログラム	応用化学 (Applied Chemistry)	受験番号							
Subject	Applied Chemistry I	Examinee's Number	M								
			(Smart Innovation)								
問題 1 (Problem 1) 問題用紙は3枚あります (three sheets for Problem 1)											

1. 次の化合物の組み合わせで、以下の性質に対しどのような違いがあるかを説明せよ。必要に応じて、図を用いてもよ

 V_{\circ} (Explain how the compounds in each pair are different with respect to the following properties. Figures may be added if necessary.)

- 1) 酸性度 (acidity)
- OH F-OH
- 2) C-N 結合長 (C-N bond length)

3) 水素化熱の絶対値 (absolute value of heat of hydrogenation) 4) S_N2 反応の速度 (rate of S_N2 reaction) へいつ へいつ へいて の Te

2. 1-クロロ-2-イソプロピルシクロヘキサンのシス体およびトランス体に関する以下の問いに答えよ。エナンチオマーが存在する場合は一方のみを示すこと。(Answer the following questions concerning *cis*- and *trans*-isomers of 1-chloro-2-isopropylcyclohexane. When enantiomers exist, draw only one of them.)

- 1) トランス体の最も安定なイス型構造を描け。 (Draw the most stable chair-conformation for the *trans*-isomer.)
- 2) シス体およびトランス体のどちらの異性体がより安定か, 説明 せよ。必要に応じて、図を用いてもよい。(Explain which is more stable, *cis*-isomer or *trans*-isomer. Figures may be added if necessary.)

3) シス体とトランス体にそれぞれナトリウムエトキシドをエタノール中で反応させて得られる脱離反応の主生成物の構造式を描け。(Draw the structural formula of the major organic products obtained from the elimination reactions of the *cis*- and *trans*-isomers with sodium ethoxide in ethanol, respectively.)

シス体 (cis-isomer)

トランス体 (trans-isomer)

3. 次の反応の化合物 A と B の構造式を描き、立体選択性の理由を説明せよ。必要に応じて、図を用いてもよい。エナンチオマーが生成する場合は一方のみを示すこと。(Draw the structural formula of compounds A and B in the following reactions, and explain the reason for stereoselectivity of the following reaction. Figures may be added if necessary. When enantiomers are formed, draw only one of them.)

$$CH_3$$
 BH_3 A $H_2O_2/NaOH$ aq B :

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目I)	プログラム	応用化学	受験番号						
Subject	Applied Chemistry I	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M					
	-	·	(Smart Innovation)							

問題 1 (Problem 1) 続き (Continued)

4. 次の反応における有機の主生成物を構造式で描け。必要に応じて、立体化学が分かるようにすること。エナンチオマーが生成する場合は一方のみを示すこと。(Draw the structural formula of the major organic product in each reaction. Show the stereochemistry if necessary. When enantiomers are formed, draw only one of them.)

1) HOOC H Br₂ H₃C HCI HCI COOH

4) O OH 1. NaH 2. CH₃Li 3. H₂O

7) COOCH₃ 8) Intramolecular aldol condensation
$$\frac{\Delta}{\Delta}$$
 COOCH₃ $\frac{\Delta}{\Delta}$ $\frac{\Delta}$

5. 適当な無機試薬を用いて、フェノールから o-ブロモフェノールを選択的に合成する反応スキームを完成させよ。反応機構を示す必要はない。(Complete a reaction scheme for the selective synthesis of o-bromophenol from phenol using suitable inorganic reagents. It is not necessary to show the reaction mechanism.)

6. ヘミアセタールからアセタールが生成する酸触媒反応機構を、電子対の動きを示す巻矢印表記法を用いて描け。(Draw the mechanism using curved arrows, which show the movement of electron pairs, for the production of acetal from acid-catalyzed reaction of hemiacetal.)

ROH ROH

$$CH_3$$
 CH_3
 CH_3

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目 応用化学(専門科目 I) プログラム 応用化学 受験番号 Subject Applied Chemistry I Program (Applied Chemistry) スマートイノベーション Examinee's Number M					\ = 0	10 1 0 7 1 10 H 7 CALL	, 11000000, 100, 1000)
Subject Applied Chemistry 1 170gram 27-11/1-1997 Examine Strames 11/1	試験科目	応用化学(専門科目I)	プロ	グラム		受験番号	
	Subject	Applied Chemistry I	Pro	gram	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
(Smart Innovation)					(Smart Innovation)		

問題 1 (Problem 1) 続き (Continued)

7. 分子量が 10,000, 20,000, および 30,000 の分子を等モルずつ混合したとする。この混合物の数平均分子量 M_n , 重量平均分子量 M_w , および多分散度を有効数字 2 桁で求めよ。(The molecules with molecular weights of 10,000, 20,000, and 30,000 were mixed in equal molar amounts. Calculate the number-average molecular weight M_n , weight-average molecular weight M_w , and polydispersity of this mixture to two significant figures.)

 $M_{\rm n} =$

 $M_{\rm w} =$

多分散度 (polydispersity)=

- 8. ヘキサメチレンジアミンとアジピン酸との重縮合により、6,6-ナイロンが得られる。この反応について以下の問いに答えよ。(6,6-Nylon is obtained from the polycondensation of hexamethylenediamine and adipic acid. Answer the following questions on this reaction.)
- 1) N_A モルのヘキサメチレンジアミンと N_B モルのアジピン酸($N_A/N_B=r,N_A\le N_B,0\le r\le 1$)を用いて重縮合により 6,6-ナイロンを合成したとき,ヘキサメチレンジアミンの反応度が p($0\le p\le 1$)であったとする。このときの生成ポリマーの数平均重合度 x_n を仕込み比 r と反応度 p を用いて表す式を導け。 (When a 6,6-nylon was synthesized by polycondensation from N_A mol of hexamethylenediamine and N_B mol of adipic acid ($N_A/N_B=r,N_A\le N_B,0\le r\le 1$), the degree of the reaction of the hexamethylenediamine was assumed as p ($0\le p\le 1$). Derive the equation indicating the number-average degree of polymerization x_n of the resulting polymer by using r and p.)

- 2) 1)に基づいて、高分子量の 6,6-ナイロンを得るために必要な条件を二つ、箇条書きで記せ。(Itemize two requirements to obtain a high molecular-weight 6,6-nylon based on 1).)
- 3) ヘキサメチレンジアミンとアジピン酸からナイロン塩が生成する反応式を描き, 6,6-ナイロンをナイロン塩から合成する利点を説明せよ。(Draw the reaction equation in which nylon salt is produced from hexamethylenediamine and adipic acid, and explain the advantage of synthesizing 6,6-nylon from nylon salt.) 反応式 (reaction equation):

利点 (advantage):

9. 以下の重付加反応により生成するポリマーの化学構造式を描け。(Draw the structural formula of the polymers obtained from the following polyaddition reactions.)

1) 2)
$$H_2N-R-NH_2 \longrightarrow CH=CH- \longrightarrow h\nu$$

$$CN-R'-NCO$$

(2025年8月28日実施 / August 28, 2025)

試験科目 応用化学 (専門科目	I プログラム	, , ,	受験番号	
Subject Applied Chemistry	I Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
		(Smart Innovation)		

問題 2 (Problem 2) 問題用紙は 2 枚あります (two sheets for Problem 2)

- 1. 次の熱力学に関する語句を簡潔に説明せよ。(Explain briefly the following terms related to thermodynamics.)
- 1) 熱力学第一法則 (first law of thermodynamics)
- 2) カルノーサイクル (Carnot cycle)

- 3) 化学ポテンシャル (chemical potential)
- 4) 三重点 (triple point)

2. 125 g の液体のメタノール(モル質量 32.0 g mol⁻¹)を 100 kPa, 298 K から 300 kPa, 366 K に変化させたときのエンタルピー変化を計算せよ。これらの条件下において、メタノールは液体状態と仮定し、その密度と定圧モル熱容量 $C_{p,m}$ はそれぞれ 0.791 g cm⁻³ と 81.1 J K⁻¹ mol⁻¹ で一定とする。(Calculate the change in enthalpy when 125 g of liquid methanol (molar mass, 32.0 g mol⁻¹) initially at 100 kPa and 298 K undergoes a change of state to 300 kPa and 366 K. Under these conditions, methanol is assumed to be in a liquid state, and its density and specific molar heat capacity at constant pressure, $C_{p,m}$, remain unchanged at 0.791 g cm⁻³ and 81.1 J K⁻¹ mol⁻¹, respectively.)

3. ナフタレン(モル質量 128g mol⁻¹)とアントラセン(モル質量 178g mol⁻¹)の混合物 8.0g をベンゼン 400g に溶解させると,その溶媒の凝固点は,純粋なベンゼンの凝固点(279 K)よりも 0.70 K 低くなった。ベンゼンの凝固点降下定数 K_f を 5.1 K kg mol⁻¹ として,混合物中に含まれるナフタレンの質量を計算せよ。 (When 8.0 g of a mixture of naphthalene (molar mass, 128 g mol⁻¹) and anthracene (molar mass, 178 g mol⁻¹) was dissolved in 400 g of benzene, the freezing point of the solvent was 0.70 K lower than that of pure benzene (279 K). Calculate the mass of naphthalene in the mixture, given that the freezing-point constant, K_f , for benzene is 5.1 K kg mol⁻¹.)

(2025年8月28日実施 / August 28, 2025)

= NEA (N H)	· /	ラム 応用化学	TO FA.TO. II	
試験科目 応用化学	2(専門科目 I) プログ	/4/14/14	受験番号	
Subject Appl	ed Chemistry I Progra	am (Applied Chemistry) スマートイノベーション	Examinee's Number	M
		(Smart Innovation)		

問題2 (Problem 2) 続き (Continued)

- 4. 量子論に関する以下の問いに答えよ。ただし、プランク定数は $6.626 \times 10^{-34} \, \mathrm{Js}$ 、アボガドロ定数は $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ 、電子の質量は $9.109 \times 10^{-31} \, \mathrm{kg}$ 、電気素量は $1.602 \times 10^{-19} \, \mathrm{C}$ 、光の速度は $2.998 \times 10^8 \, \mathrm{m \ s}^{-1}$ とする。 (Answer the following questions related to the quantum theory. Use the following constants, if needed: Planck constant, $6.626 \times 10^{-34} \, \mathrm{J \ s}$; Avogadro constant, $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$; mass of an electron, $9.109 \times 10^{-31} \, \mathrm{kg}$; elementary charge, $1.602 \times 10^{-19} \, \mathrm{C}$; speed of light, $2.998 \times 10^8 \, \mathrm{m \ s}^{-1}$.)
- 1) ある金属の仕事関数は2.30 eV である。この金属に波長 400 nm の光を照射した。(The work function of a certain metal is 2.30 eV. Light with wavelength of 400 nm is irradiated to this metal.)
 - (a) 入射光のフォトン 1 個当たりのエネルギーを求めよ。(Calculate the energy of one photon.)
 - (b) 放出される光電子の最大運動エネルギーを求めよ。(Calculate the maximum kinetic energy of the photoelectron.)
- 2) 運動エネルギーが 150 eV の電子の速度とド・ブロイ波長を求めよ。(Calculate the speed and de Broglie wavelength of an electron with kinetic energy of 150 eV.)
- 3) 電子の位置が 100 pm の不確かさでわかっているとする。その電子の運動量の不確かさ(Δp)の下限を求めよ。(Suppose an electron's position is measured within an uncertainty of 100 pm, calculate the minimum uncertainty in momentum (Δp).)
- 4) 長さ 1.00 nm の 1 次元の箱の中に電子が閉じ込められている。基底状態と第 2 励起状態のエネルギー差を求めよ。 (Calculate the energy gap between the second excited state and the ground state of an electron in a one-dimensional box with length of 1.00 nm.)
- 5) 「H₂分子の結合を調和振動子とみなし、力の定数 500 N m⁻¹ を用いて基底状態と第1 励起状態のエネルギー差を求めよ。 (Consider the bond in ¹H₂ molecule as a harmonic oscillator. Using a force constant of 500 N m⁻¹, calculate the energy gap between the first excited state and the ground state.)

Entrance Examination Booklet (General Selection)

			(20	25年8月28日実施	/ August 28, 20	025)
試験科目	応用化学(専門科目 I)	プログラム	応用化学	受験番号		
Subject	Applied Chemistry I	Program	(Applied Chemistry)	Examinee's Number	M	

問題3 (Problem 3) 問題用紙は2 枚あります (two sheets for Problem 3)

- 1. 次の括弧 [] 内の選択肢のうち、問いで求めるものを 選び解答欄に記せ。また、①、②については理由を述べよ。 (Answer the questions by selecting the correct answer from the alternatives given in parentheses []. The correct answer should be given in the answer column. Describe the reasons for ① and ②.) ① [SF6, IF5] 結合角が大きい化学種 (Which has larger bond
- ② [O₂, O₂⁻] 結合距離が長い化学種 (Which has larger bond length?)
- ③ [MgAl₂O₄, MgO, Mg(OH)₂] Mg²⁺イオンが最も小さなイ オン半径を持つと考えられる化合物 (Which compound is assumed to have the smallest ionic radius for Mg²⁺?)
- ④ [Ga, Ge, As] 第一イオン化エネルギーの最も小さい元 素 (Which has the smallest first ionization energy?)
- ⑤ [Si, P, S] 電子親和力が最も小さい元素 (Which has the smallest electron affinity?)
- ⑥ [S²-, Cl-, K+, Ca²+] 六配位において最もイオン半径の大 きいイオン (Which has the largest ionic radius with the coordination number of 6.)
- ⑦ [Co²⁺(LS), Co²⁺(HS), Co³⁺(HS)] 低スピン状態(LS)または 高スピン状態(HS)を考慮した場合、八面体配位において最 もイオン半径の大きいイオン (In an octahedral coordination, which has the largest ionic radius? Consider the difference between low spin (LS) and high spin (HS) configurations.)
- ⑧ [O, F, Ne] オールレッド・ロコウの電気陰性度が最も大 きい元素 (Which has the largest electronegativity determined by Allred and Rochow?)
- ⑨ [3s, 3dx2-y2, 3dz] 節面が平面から成る原子軌道 (Which atomic orbital has nodal surface consisting of flat planes?)
- ① [Fe²⁺, Co²⁺, Ni²⁺] 高スピンの四面体配位にあって、結晶 場安定化エネルギーで最も大きな安定化を受けるイオン (In a tetrahedral high spin configuration, which ion is the most stabilized by obtaining a crystal field stabilization energy?)
- ① [Na+, Mg²⁺, Al³⁺] 水和により最も安定化するイオン (Which ion is the most stabilized by hydration?)

周期表の一部 (a part of periodic table of the elements)

11-47	1127	- h-1 (2 (00)	cu c OI	PVIII									
Na	Mg					-						Al	Si	Р
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As
Rb	Sr	Y.	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi

胖台 懶	(1	Ins	we	rs)
					-
1					
1					

(Smart Innovation)

ULD IN (TIP	WOLD)			
		1		
答 (Answer)	理由 (Reason	n)		
		2	with an and the state of the st	
		(4)		
答 (Answer)	理由 (Reaso	n)		
3	4	5	6	7
8	9	10	(11)	
				,
Landon	 			-

- 2. 次の語句を説明せよ。(Explain the following terms.)
- 1) 固有欠陷 (intrinsic defects)
- 2) フェルミ準位 (Fermi level)
- 3) マリケンの電気陰性度 (Mulliken electronegativity)
- 4) ゲル電気泳動 (gel electrophoresis)
- 5) 原子間力顕微鏡 (atomic force microscope (AFM))

Entrance Examination Booklet (General Selection)
(2025 年 8 月 28 日実施 / August 28, 2025)

			(20	25.107120日天0世	/ / 1105ust 20, 2025).
試験科目	応用化学(専門科目I)	プログラム	, m , 14 f m 4	受験番号	
Subject	Applied Chemistry I	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 続き (Continued)

3. 次の文章を読み,以下の1)と2)の問いに答えよ。(Read the following text and answer questions of 1) and 2).)

アンモニアボランはルイス(①)であるアンモニアとルイス(②)であるボランが(③)結合した化合物であり,(④)の C-C 結合を B-N 結合で置き換えた構造をとる。(Ammonia borane is a compound formed with ammonia, which acts as a Lewis(①), and borane, which acts as a Lewis(②), by the(③) bond. It has an isostructure in which the C-C bond of(④) is replaced by a B-N bond.)

- 1) 文章中の①~④にあてはまる最も適切な語句を答えよ。 (Answer the most appropriate word that fits each of ①-④ in the text.)
- 3
- 2) アンモニアボラン中の B-H 結合と N-H 結合の長さを 比べたとき, どちらが長いかについて, そのようになる理 由とともに答えよ。(Answer which bond is longer, the B-H bond or the N-H bond in ammonia borane, along with the reason.)
- dm^{-3})がある。 1.0×10^{-6} mol の HA を溶解させた酸性溶液に対してある塩基を加えて滴定した。溶液全量が 1.0×10^2 cm³ で呈色したときの pH を求めよ。ただし,呈色は溶液中の[A¯] = 5.0×10^{-6} mol dm¯³ で生じるものとする。(A monochromatic indicator, HA, which is a weak acid with an acid dissociation constant $K_{HA} = 2.0 \times 10^{-10}$ mol dm¯³, is used. A quantity of 1.0×10^{-6} mol of HA is dissolved in an acidic solution, and the solution is titrated by adding a base. Calculate the pH at the point when the solution changes color, given that the total volume is 1.0×10^2 cm³. Assume that the color change occurs when the concentration of A¯ in the solution reaches 5.0×10^{-6} mol dm¯³.)

6. 弱酸の一色指示薬 HA(酸解離定数 KHA = 2.0×10⁻¹⁰ mol

- 4. 次の a)~j)の化合物のうち、酸化数が+3 となっている元素を含む化合物をすべて選べ。(Of the following compounds a)-j), answer all the compounds that contain element(s) with oxidation number of +3.)
- a) AiF_3 b) $GaCl_2$ c) $PbBr_2$ d) TII_3 e) Mn_3O_4 f) $SrTaO_2N$ g) $LaTiO_2N$ h) $KMnO_4$ i) $[PtCl_2(NH_3)_2]$ j) $Fe_4[Fe(CN)_6]_3$
- 5. クロム(Cr) (Z=24)の 4s 電子に対する有効核電荷(Z_{eff}) をスレーター則によって計算せよ。(Calculate the effective nuclear charge (Z_{eff}) for the 4s electron(s) of chromium (Cr) (Z=24) using Slater's rules.)

7. 二色指示薬 HX(酸解離定数 $K_{HX}=2.0\times10^{-4}$ mol dm^{-3})は $[X^-]/[HX]$ の値が $0.1\sim10$ の範囲をとるとき,溶液中の pH に応じて色が徐々に変化する。この変色域を pH の値で示せ。 (A dichromatic indicator HX (acid dissociation constant $K_{HX}=2.0\times10^{-4}$ mol dm^{-3}) gradually changes color depending on the pH of the solution when the ratio $[X^-]/[HX]$ is in the range of 0.1 to 10. Answer the pH range over which this color change occurs.)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目Ⅱ)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

試験時間: 13 時 30 分~15 時 00 分 (Examination Time: From 13:30 to 15:00)

受験上の注意事項

- (1) 問題用紙兼解答用紙が表紙を含み10枚あります。
- (2) この表紙を含むすべての問題用紙兼解答用紙に、受験番号を記入してください。
- (3) これは問題用紙と解答用紙が合冊されたものです。解答は指定された箇所に記入してください。
- (4) 解答が書ききれないときは、同じ用紙の裏面を利用しても構いません。ただし、その場合は「裏に続く」などと裏面に記載したことが分かるようにしておくこと。
- (5) 3 間中から1 問選択し解答しなさい。なお、選択した問題は、下表の欄に〇印を付して表示すること。
- (6) 貸与された計算機(電卓)を使用しても差し支えない。
- (7) 質問あるいは不明な点がある場合は手を挙げてください。

Notices

- (1) There are 10 problem and answer sheets including a front sheet.
- (2) Fill in your examinee's number in the specified positions in this cover and each problem and answer sheet.
- (3) This examination booklet consists of problem sheets and answer sheets. Answer the problems in the specified position.
- (4) If the space is exhausted, use the reverse side of the sheet and write down "to be continued" on the last line of the sheet.
- (5) Select and answer one problem among the three problems. In addition, mark the problem that you have selected with a circle in the selection column in the table given below.
- (6) You may use the provided calculator if you need.
- (7) Raise your hand if you have any questions.

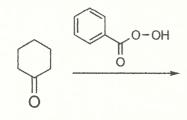
問題番号	問題1	問題2	問題3
Problem Number	Problem 1	Problem 2	Problem 3
選択			
Selection			

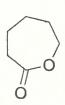
2025年10月, 2026年4月入学 (October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28 2025)


			(20	23 午 0 万 20 日天心	/ August 20, 2023)
試験科目	応用化学(専門科目Ⅱ)	プログラム		受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		


問題1 (Problem 3) 問題用紙は3 枚あります (three sheets for Problem 1)

- 1. ベンゼンを出発物質として、以下の化合物を合成する反応式を完成させよ。(Complete the reaction schemes for the following compounds, using benzene as a starting material.)

 SO_3H

- 2. アルキル基の転位を伴う反応について、以下の問いに答えよ。(Answer the following questions about the reactions involving rearrangement of alkyl groups.)
- 1) シクロヘキサノンが過安息香酸との反応でεカプロラクトンに変換される反応の機構を,電子対の動きを示す巻矢印表 記法を用いて描け。(Draw the mechanism using curved arrows, which show the movement of electron pairs, for the reaction from cyclohexanone and perbenzoic acid to ε -caprolactone.)

2) アセチルアジド (CH₃CON₃) の共鳴構造式を描け。さらに、アセチルアジドがメチルイソシアナート (CH₃NCO) に変 換される反応の機構を、電子対の動きを示す巻矢印表記法を用いて描け。(Draw the resonance form of acetyl azide (CH3CON3). Draw the mechanism using curved arrows, which show the movement of electron pairs, for the reaction from acetyl azide to methyl isocyanate (CH₃NCO).)

共鳴構造式 (resonance form)	反応機構 (reaction mechanism)

- 3. 以下にあてはまる, 分子式 C5H10 で表される化合物の構造式を描け。エナンチオマーが存在する場合は一方のみを示 すこと。 (Draw the structural formula of the compound with the molecular formula of C₅H₁₀ that corresponds to each following information. When enantiomers exist, draw only one of them.)
- 1) 光学活性を示す化合物 (optically active compound(s))

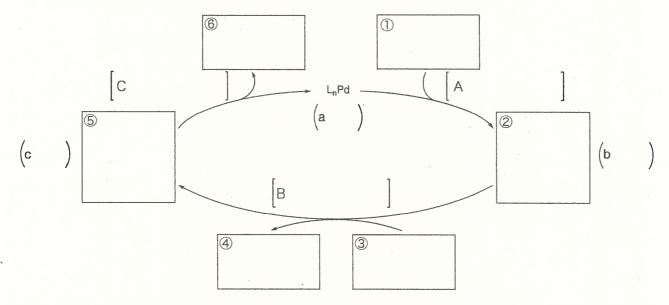
(a) ${}^{1}H$ NMR: $\delta = 1.51$ (10H, s) ppm

- 2) HNMR において下記の化学シフト値を示す化合物 (compounds giving the following chemical shifts in the HNMR)
- (b) ¹H NMR: δ = 5.19 (1H, q), 1.68 (3H, s), 1.60 (3H, s), 1.56 (3H, d) ppm 1) 2) (a) 2) (b)

2025年10月,2026年4月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)


応用化学(専門科目Ⅱ)
Applied Chemistry II

	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション (Smoot Introduction)	受験番号 Examinee's Number	M
L		(Smart Innovation)		

問題1 (Problem 1) 続き (Continued)

4. 下記の熊田-玉尾-コリューカップリング反応による一置換ビチオフェンの合成について、以下の問いに答えよ。なお、R は置換基、X はハロゲン、L は形式電荷をもたない配位子とする。(Answer the following questions regarding the synthesis of the mono-substituted bithiophene using the Kumada-Tamao-Corriu cross-coupling reaction shown below. "R" is a substituent, "X" is a halogen, "L" is a ligand having no formal charge.)

1) ①~⑥の 内に最も適切な構造式を記入し、以下の触媒サイクルを完成させよ。また、a~c の()内にパラジウムの形式酸化数、A~C の [] 内に各素反応の名称をそれぞれ書け。 (Complete the catalytic cycle of the reaction shown below by drawing a structural formula in the square blanks ①-⑥. Give the formal oxidation states of nickel and the name of elementary reactions in the parentheses a–c and square brackets A–C, respectively.)

2) ハロゲン化チオフェンの置換基 R がアルキル基とニトリル基の場合, 生成物の収率が高いのはどちらの場合か。理由とともに答えよ。 (When the substituent R of halogenated thiophene is an alkyl group or a nitrile group, which case yields a higher product yield? Also explain the reason.)

置換基 (substituent):

理由 (reason):

3) 2)で生成物の収率が低くなると考えられる場合において、生成物の収率を向上させるための工夫例を1つ挙げ、理由を簡潔に説明せよ。(In the case where the product yield is expected to be lower in 2), propose one modification to the reaction or reaction conditions that could improve the product yield. Also explain the reason briefly.)

工夫例 (modification):

理由 (reason):

4) ハロゲン化チオフェンのハロゲン X がヨウ素と塩素の場合, 生成物の収率が高いのはどちらの場合か。理由とともに答えよ。(When the halogen X of halogenated thiophene is an iodine atom or a chlorine atom, which case yields a higher product yield? Also explain the reason.)

ハロゲン (halogen):

理由 (reason):

2025年10月,2026年4月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

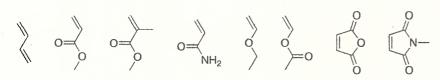
	120		(20	23 午 0 月 20 日美旭	/ Au
試験科目	応用化学(専門科目Ⅱ)	プログラム		受験番号	_
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題1 (Problem 1) 続き (Continued)

- 5. スチレンの重合について、以下の問いに答えよ。(Answer the following questions on the polymerization of styrene.)
- 1) 開始剤としてアゾビスイソブチロニトリル (AIBN) を用いたスチレンの重合における開始反応と成長反応の反応式を描け。(Draw the initiation and propagation reaction equations in the polymerization of styrene using azobis(isobutyronitrile) (AIBN) as an initiator.)

開始反応 (initiation reaction)

成長反応 (propagation reaction)


2) 以下のスチレンの重合はリビング的に進行する。その理由を簡潔に説明せよ。(The following polymerization of styrene proceeds in a living manner. Briefly explain the reason.)

3) 上記 1) と 2)の重合について、右のグラフ 1) 1) と 2)に、それぞれスチレンの反応率(転化率)に対して生成するポリスチレンの分子量の関係を描け。(Draw the relationship between the conversion of styrene and the molecular weight of the resulting polystyrene for the above polymerizations 1) and 2) in graphs 1) and 2) on the right, respectively.)

- 4) 上記 1)や 2)の重合に 1,4-ジビニルベンゼンを添加したときに生成する高分子の構造上の特徴を簡潔に述べよ。(Briefly describe the structural characteristics of the polymer obtained when 1,4-divinylbenzene is added to the above polymerizations in 1) and 2).)
- 5) 以下のモノマーの中から、上記 1) と 2)に示す重合と同様の機構では単独重合しないものを二つ選び、〇で囲め。(Select two monomers from the list below that cannot undergo homopolymerization by similar mechanisms used in the above polymerizations 1) and 2) and circle them.)

6. 高分子の絶対分子量と相対分子量を測定する方法をそれぞれ一つずつ挙げよ。(Give one method for measuring the absolute molecular weight and one method for measuring the relative molecular weight of polymers.)

絶対分子量 (absolute molecular weight)

相対分子量 (relative molecular weight)

(2025年8月28日実施 / August 28, 2025)

	the first of the second				, , , , , , , , , , , , , , , , , , , ,
試験科目	応用化学(専門科目Ⅱ)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
	6		(Smart Innovation)		

問題 2 (Problem 2) 問題用紙は 3 枚あります (three sheets for Problem 2)

1. ある分解反応が、300 K では24 分で、380 K では2.0 分で、それぞれ25 %完了する。この反応の活性化エネルギーを求めよ。ただし、頻度因子A は温度によらず一定であり、気体定数 $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$ とする。(A decomposition reaction is 25 % complete in 24 min at 300 K and in 2.0 min at 380 K. Estimate the activation energy of the decomposition reaction. The frequency factor A is constant in any temperature. Use the gas constant $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$, if needed.)

2. 反応 ($\mathbf{A} + \mathbf{B} \to \mathbf{P}$) は2次反応 (\mathbf{A} , \mathbf{B} に対する反応次数はともに 1) である。初濃度[\mathbf{A}] = 0.060 mol dm⁻³ と初濃度[\mathbf{B}] = 0.090 mol dm⁻³ の混合溶液を反応させた。 1.0 時間後, \mathbf{A} の濃度が 0.010 mol dm⁻³ に減少した。 (a)この反応の速度定数と(b)反応原系物質 \mathbf{A} および \mathbf{B} の半減期を求めよ。(A reaction, $\mathbf{A} + \mathbf{B} \to \mathbf{P}$, is second-order kinetics. Both the reactants \mathbf{A} and \mathbf{B} have a partial order of 1. The mixture of initial concentrations of [\mathbf{A}] = 0.060 mol dm⁻³ and [\mathbf{B}] = 0.090 mol dm⁻³ was reacted. After 1.0 h, the concentration of \mathbf{A} decreased to 0.010 mol dm⁻³. Estimate (a) the rate constant and (b) the half-life time of reactants \mathbf{A} and \mathbf{B} .)

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

			(200	10/1 10 H) C/I	/ 1 kagast 20, 2025)
試験科目	応用化学(専門科目Ⅱ)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		
DDDE O /P	11 0 10 10 10 11				

問題2 (Problem 2) 続き (Continued)

- 3. 量子論に関する以下の語句を簡単に説明せよ。(Explain the following terms related to the quantum theory clearly.)
- 1) 軌道近似 (orbital approximation)
- 2) パウリの排他原理 (Pauli exclusion principle)
- 3) 電子親和力 (electron affinity)

4. 以下の式(Z: 原子番号, a_0 : ボーア半径 ($5.292 \times 10^{-11}\,\mathrm{m}$), r: 原子核から電子までの距離)で表される水素類似原子(水素型原子)の 1s 軌道の波動関数 (ψ_{1s}) に関する以下の問いに有効数字 3 桁で答えよ。(Answer the following questions to three significant figures regarding the wavefunction of the 1s orbital (ψ_{1s}) of a hydrogen-like (hydrogenic) atom, given by the following equation. Here, Z is the atomic number, a_0 is the Bohr radius ($5.292 \times 10^{-11}\,\mathrm{m}$), and r is the distance of the electron from the nucleus.)

$$\psi_{1s} = \left(\frac{Z^3}{\pi a_0^3}\right)^{1/2} e^{-Zr/a_0}$$

必要なら以下の積分公式を用いてもよい。(Use the following integral formula, if needed.)

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

- 1) F⁸⁺において電子が見つかる確率密度(※単位体積あたりの存在確率)が最大値の 50 %となる半径を答えよ。(For F⁸⁺, answer the radius at which the electron probability density (i.e., the probability per unit volume) is 50 % of its maximum value.)
- 2) Li²⁺の平均半径(※半径の期待値)を答えよ。(Answer the mean radius (i.e., the expectation value of the radius) of Li²⁺.)

2025年10月, 2026年4月入学 (October 2025 and April 2026 Admissions)

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University
Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目 Subject	応用化学(専門科目 II) Applied Chemistry II	プログラム Program	(Appli
Subject	rippinou Chemistry II	Trogram	スマー (Sma

プログラム	応用化学 (Applied Chemistry)	受験番号	2
Program	スマートイノベーション (Smart Innovation)	Examinee's Number	M =

問題2 (Problem 2) 続き (Continued)

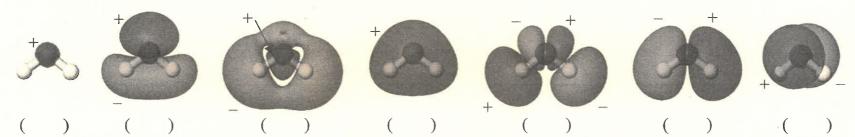
5. 量子化学計算により水分子の平衡構造と分子軌道が以下のように得られた。表 1 には原子核座標,表 2 には各分子軌道を構成する原子軌道の係数が示されている。以下の問いに簡潔に答えよ。(The equilibrium structure and molecular orbitals of water molecule were obtained by quantum chemical calculation. Tables 1 and 2 show the nuclear coordinates and the coefficients of atomic orbitals for each molecular orbital, respectively. Answer the following questions briefly.)

表 1 水分子の原子核座標 (Table 1 Nuclear coordinates of water molecule)

原子	座標 (coordinates) (pm)			
(atom)	X	Y	Z	
O	0.0	0.0	12.7	
H_A	0.0	75.8	-50.8	
Нв	0.0	-75.8	-50.8	

表 2 水分子の分子軌道 ($\phi_1 \sim \phi_7$) を構成する原子軌道の係数 (Table 2 Coefficients of atomic orbitals for molecular orbitals ($\phi_1 - \phi_7$) of water molecule)

	7 - 7 /									
原子	原子軌道	$arphi_1$	$arphi_2$	$oldsymbol{arphi}_3$	$arphi_4$	$oldsymbol{arphi}_5$	φ_6	φ_7		
(atom)	(atomic orbital)	(-20.2514)	(-1.2577)	(-0.5942)	(-0.4596)	(-0.3926)	(0.5822)	(0.69350)		
O	1s	0.99421	-0.23375	0.00000	-0.10404	0.00000	-0.12593	0.00000		
O	2s	0.02586	0.84425	0.00000	0.53822	0.00000	0.82123	0,00000		
O	$2p_x$	0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000		
O	2p _y	0.00000	0.00000	0.61259	0.00000	0.00000	0.00000	0.96030		
O	$2p_z$	-0.00417	-0.12298	0.00000	0.75620	0.00000	-0.76327	0.00000		
H_A	1s	-0.00559	0.15565	0.44916	-0.29482	0.00000	-0.76964	-0.81506		
H_B	1s	-0.00559	0.15565	-0.44916	-0.29482	0.00000	-0.76964	0.81506		


カッコの中は軌道エネルギー (Hartree)。 (Orbital energies (Hartree) are in parentheses.)

水素原子(HA, HB)は表1の原子核座標に対応する。(The hydrogen atoms (HA and HB) correspond to the nuclear coordinates in Table 1.)

1) 水分子の分子軌道($\varphi_1 \sim \varphi_7$)のうち,最高被占軌道(HOMO)と最低空軌道(LUMO)に対応する軌道を答えよ。(Answer the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the molecular orbitals ($\varphi_1 - \varphi_7$) of water molecule.)

2) Koopmans の定理によると、イオン化ポテンシャル(IP)は HOMO のエネルギーの逆符号、IP = -E(HOMO) で表される。水分子の IP(eV)を計算せよ。なお、1 Hartree = 27.21 eV とする。(According to the Koopmans' theorem, ionization potential (IP) is defined by the reverse sign of energy of HOMO, IP = -E(HOMO). Calculate the IP(eV) of water molecule. Use 1 Hartree = 27.21 eV, if needed.)

3) 描画ソフトにより可視化した各分子軌道を下に示す。対応する分子軌道($\varphi_1 \sim \varphi_7$)を答えよ。なお、分子軌道近くの+、一は位相の違いを表す。 (Each molecular orbital visualized by a drawing software is given below. Answer the corresponding molecular orbitals ($\varphi_1 - \varphi_7$). The + and – signs near molecular orbitals indicate the difference in phase.)

4) 水分子は C_{2v} 群に分類される。指標表(表 3)に従い,以下の分子軌道の対称性を答えよ。(Water molecule is categorized as C_{2v} group. Answer the symmetry of following molecular orbitals based on the character table (Table 3).)

 φ_2 () φ_3 () φ_4 () φ_5 ()

表 $3 C_{2v}$ の指標表 (Table 3 Character table of C_{2v}) $C_{2v} E C_{2}(z) \sigma_{v}(xz) \sigma_{v}(yz)$

C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	1		1

(2025年8月28日実施 / August 28, 2025)

試験科目 Subject	応用化学(専門科目 II) Applied Chemistry II	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション	受験番号 Examinee's Number	M
			(Smart Innovation)	·	

問題3 (Problem 3) 問題用紙は3 枚あります (Three sheets for Problem 3)

- 1. 図1は ZnS の多形で六方晶をとる結晶構造を示している。格子定数は、a=0.382 nm, c=0.626 nm である。次の間に答えよ。(Figure 1 shows the crystal structure of a hexagonal polymorph of zinc sulfide ZnS. The lattice constants are a=0.382 nm, c=0.626 nm. Answer the questions below.)
- 1) S 原子の配置はある最密充填構造に関連付けられる。その構造の名前を答えよ。(The lattice of S atom is correlated with a close packing structure. Answer the name of the close packing structure.)
- 2) この結晶構造の名称を答えよ。(Answer the name of crystal structure of this polymorph of ZnS.)
- 3) この結晶構造では S^2 -が作る四面体孔を Zn^2 +が占めている。すべて の四面体孔のうち Zn^2 +が占有している割合を答えよ。(Zn^2 + occupy tetrahedral holes formed by S^2 -. Answer the ratio of tetrahedral holes which are occupied by Zn^2 +.)

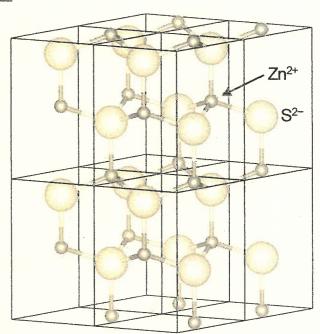
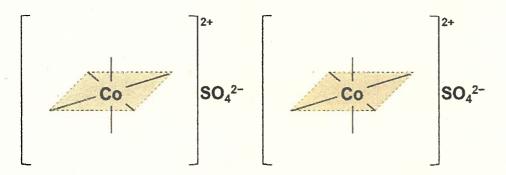


図 1. ZnS の一つの多形の結晶構造 (Figure 1. Crystal structure of a polymorph of ZnS.)

- 4) この ZnS 結晶の密度を計算せよ。 Zn, S のモル質量はそれぞれ 65.4, 32.1 g mol⁻¹ とする。(Calculate the density of this ZnS crystal. Molar masses of Zn and S are 65.4 and 32.1 g mol⁻¹, respectively.)
- 5) CuKa (波長 $0.154\,nm$) を用いてこの ZnS 結晶の粉末 X 線回折を測定するとき、指数 002 および 110 の回折のブラッグ角 θ を計算せよ。 (When X-ray powder diffraction pattern of the ZnS crystal is measured by using CuKa radiation (wavelength $0.154\,nm$), calculate the Bragg angles θ for the reflections with indices 002 and 110.)
- 2. 有機成分と吸着水を含む非晶質金属酸化物ゲル試料を熱重量示差熱分析装置(TG-DTA)で分析したところ,重量減少を伴う吸熱現象,重量減少を伴う発熱現象,重量変化を伴わない発熱現象が観測された。これら3つの現象の考え得る解釈を述べよ。ただし,測定雰囲気の流通ガスとして乾燥空気を用いたとする。(When an amorphous metal oxide gel sample containing organic moieties and adsorbed water was measured with thermogravimetry-differential thermal analysis (TG-DTA), an endothermic event with a mass decrease, an exothermic event with a mass decrease, and an exothermic event without mass change were observed. Describe possible interpretations for these three events. Assume that dry air was used as the flow gas.)

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)


試験科目	応用化学(専門科目Ⅱ)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 続き (Continued)

3. K₂MnO₄ と KMnO₄ はそれぞれ暗緑色と深紫色の水に易溶な固体である。K₂MnO₄ を水に溶かすと緑色の溶液となる。 この溶液に酸を加えるとどのような現象が起こるかを推測せよ。ただし、標準還元電位を E° として、 solids that are easily soluble in water, and dark green and deep purple, respectively. When K2MnO4 is dissolved in water, it forms a green solution. Predict what phenomena will occur when an acid is added to this solution. $MnO_4^- + e^- \rightarrow MnO_4^{2-} : E^\circ = +0.56 \text{ V}$ $MnO_4^{2-} + 4H^+ + 2e^- \rightarrow MnO_2 + 2H_2O : E^\circ = +2.26 \text{ V}$, where E° is standard reduction potential.)

- 4. 次のa), b)の名称の錯体はいずれも八面体六配位構造である。それぞれがとりうる2つの異性体の立体構造を図示し、 異性体の種類を①~⑥から選べ。(The complexes named in a) and b) both have an octahedral six-coordination structure. Illustrate the stereostructures of the two isomers for each and select the type of isomer from ①-⑥.)
- ① イオン化異性体 (ionization isomer) ② 幾何異性体 (geometrical isomer) ③ 配位異性体 (coordination isomer)

- ④ 結合異性体 (linkage isomer)
- ⑤ 鏡像異性体 (enantiomer)
- ⑥ 水和異性体 (hydration isomer)
- a) ペンタアンミンニトリトコバルト(III) 硫酸塩 (pentaamminenitritocobalt (III) sulfate)

異性体の種類 (type of isomer):

b)トリアンミントリクロリドコバルト(III) (triamminetrichloridocobalt (III))

異性体の種類 (type of isomer):

5. アルカリ金属である Li と K のそれぞれを酸素存在下(ただし乾燥条件)で燃焼させると片方は酸化物 (MoO)を生成 しやすく、もう片方は超酸化物 (MO2) を生成しやすい。超酸化物を生成しやすいのは Li と K のいずれであるかを答え よ。また、そのアルカリ金属が酸化物より超酸化物を生成しやすい理由を説明せよ。(When alkali metals, Li and K, burn in the presence of O_2 under dry conditions, one forms a metal oxide (M_2O) and the other forms a metal superoxide (MO_2) . Answer which alkali metal, Li or K, preferably forms a superoxide. In addition, explain the reason why that alkali metal is more likely to form a superoxide than an oxide.)

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

			(20	25 十 0 /1 20 日天/池	/ August 20, 2023)
試験科目	応用化学(専門科目 II)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 続き (Continued)

6. ある化合物 HA は, 酸型(HA)と塩基型(A⁻)で異なる紫外可視吸収スペクトルを示す。以下の問いに答えよ。(A compound HA exhibits different ultraviolet—visible absorption spectra between its acidic form (HA) and basic form (A⁻). Answer the following questions.)

1) 酸型 HA は波長 507 nm に単一の吸収ピークを示し、吸光度 A は濃度 C に応じて表の値を示した。このデータから、最小二乗法により検量線 $A=a\times C+b$ の係数 a,b を求めよ。計算には下記の参考式を用いてよい。(The acidic form HA shows a single absorption peak at wavelength of 507 nm, and its absorbance A varies with concentration C as shown in the table. Based on these data, determine the coefficients a and b of the calibration curve $A=a\times C+b$ by the least-squares method. Use the reference equations

below, if needed.)

ocaca.)	
濃度	吸光度
(concentration)	(absorbance)
$-$ / μ mol dm ⁻³	
2.00	0.100
4.00	0.189
6.00	0.279
10.0	0.461

参考 (reference)						
(x_i, y_i) $(i = 1, 2,, n)$ から回帰直線を算出する際の計算式 (the formulas to calculate the linear regression line from data						
points (x_i, y_i) $(i = 1, 2,, n)$						
$a = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} \qquad b = \frac{\sum y - a\sum x}{n}$						

- 2) 未知試料の吸光度が 0.290 であったとき, 1) で求めた検量線を用いて濃度を求めよ。(When the absorbance of an unknown sample was measured to be 0.290, calculate its concentration using the calibration curve obtained in 1).)
- 3) pH を変化させて測定すると吸収スペクトルが変化したが、波長 470 nm における吸光度は一定であった。この波長は何と呼ばれるか。また、これが観測されたことは系において何を意味するかを化学種の平衡の観点から説明せよ。(The absorption spectra measured at different pH values showed no change in absorbance at wavelength of 470 nm. What is this wavelength called? Explain what the observation of this feature implies in terms of chemical equilibrium in the system.)
- 4) この化合物の波長 420 nm における吸光度は、十分に低いpH で 0.0382、十分に高いpH で 0.203 を示した。中間的な pH 3.50 では吸光度は 0.138 となり、このとき酸型と塩基型が共存している。これらの値から、この化合物の酸解離指数 p K_a を求めよ。なお、化合物の濃度は 10.0 μ mol dm $^{-3}$ 、光路長は 1.00 cm である。(The absorbance of the compound at wavelength of 420 nm was 0.0382 at enough low pH and 0.203 at enough high pH. At intermediate pH 3.50, the absorbance was 0.138, indicating the coexistence of the acidic and basic forms. Based on these values, determine the acid dissociation exponent p K_a of the compound. The concentration is constant at 10.0 μ mol dm $^{-3}$, and the light path length is 1.00 cm.)