広島大学大学院先進理工系科学研究科 博士課程前期入学試験

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination

一般選抜(2025年8月実施)

General Selection (August 2025)

解答又は解答例等 及び 出題の意図

Answers or Model Answers / Intent of the Questions

解答の公表に当たって、一義的な解答が示せない記述式の問題等については、「出題の 意図又は複数の若しくは標準的な解答例等」を公表することとしています。

また、記述式以外の問題についても、標準的な解答例として正答の一つを示している 場合があります。

In publishing answers, "the intent of the questions or multiple or standard examples of answers" are published for essay-type questions for which no univocal answer can be given.

In addition, one of the correct answers may also be given as an example of a standard answer for questions other than the essay-type.

2025 年 10 月, 2026 年 4 月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

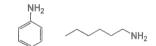
			(Aur U	25 071 20 H 700	, 11agast 20, 2020)
試験科目 Subject	応用化学(専門科目 I) Applied Chemistry I	プログラム Program	応用化学 (Applied Chemistry)	受験番号 Examinee's Number	M
			スマートイノベーション (Smart Innovation)		

問題 1 (Problem 1) 問題用紙は3枚あります (three sheets for Problem 1)

1. 次の化合物の組み合わせで、以下の性質に対しどのような違いがあるかを説明せよ。必要に応じて、図を用いてもよい。(Explain how the compounds in each pair are different with respect to the following properties. Figures may be added if necessary.)

この問題は有機化合物の性質の基礎的知識を問う。 (These questions test basic knowledge of the properties of organic compounds.)

1) 酸性度 (acidity)


電子求引性の強いフッ素の置換は、共役塩基を安定化するので、右の化合物の方が鈍酸になる。(The substitution by strongly electron-withdrawing fluorine atoms stabilizes the conjugate base, making the compound on the right a stronger acid.)

3) 水素化熱の絶対値 (absolute value of heat of hydrogenation)

共鳴安定化のため、放出される水素化熱の絶対値は、左の化合物の方が右の化合物より小さい。 (Due to resonance stabilization, the absolute value of the heat of hydrogenation released is smaller for the compound on the left than for the compound on the right.)

2) C-N 結合長 (C-N bond length)

窒素上の孤立電子対とベンゼン環の共鳴のため、左の化合物では CーN 結合に多重結合性があり、右の化合物に比べて CーN 結合が短くなる。 (Due to resonance between the lone pair on the nitrogen and the benzene ring, the C-N bond in the compound on the left has partial double bond character, making it shorter than the C-N bond in the compound on the right.)

4) S_N2 反応の速度 (rate of S_N2 reaction)

共鳴安定化があって、より安定な脱離基であるトシラートイオンを解離する右の化合物の方が、より不安定な水酸化物イオンが脱離する左の化合物より反応が速い。(The compound on the right, which releases the more stable leaving group tosylate ion due to resonance stabilization, reacts faster than the compound on the left, which releases the less stable hydroxide ion.)

- 2. 1-クロロ-2-イソプロピルシクロヘキサンのシス体およびトランス体に関する以下の問いに答えよ。エナンチオマーが存在する場合は一方のみを示すこと。(Answer the following questions concerning *cis* and *trans*-isomers of 1-chloro-2-isopropylcyclohexane. When enantiomers exist, draw only one of them.) この問題はシクロアルカンの基礎的職を問う。(These questions test basic knowledge of cycloalkanes.)
- 1)トランス体の最も安定なイス型構造を描け。 (Draw the most stable chair-conformation for the *trans*-isomer.)

2) シス体およびトランス体のどちらの異性体がより安定か, 説明 せよ。必要に応じて、図を用いてもよい。(Explain which is more stable, cis-isomer or trans-isomer. Figures may be added if necessary.)

トランス体では、二つの置換基がともにエクアトリアル位を占めることができるが、シス体では、どちらかの置換基が必ずより不安定なアキシャル位を占めるため、シス体の方がより安定になる。 (In the trans-isomer, both substituents can occupy equatorial positions, whereas in the cis-isomer, one of the substituents must occupy the less stable axial position, making the cis-isomer more stable.)

3) シス体とトランス体にそれぞれナトリウムエトキシドをエタノール中で反応させて得られる脱離反応の主生成物の構造式を描け。(Draw the structural formula of the major organic products obtained from the elimination reactions of the *cis-* and *trans*-isomers with sodium ethoxide in ethanol, respectively.)

シス体 (cis-isomer)

トランス体 (trans-isomer)

3. 次の反応の化合物 A と B の構造式を描き、立体選択性の理由を説明せよ。必要に応じて、図を用いてもよい。エナンチオマーが生成する場合は一方のみを示すこと。(Draw the structural formula of compounds A and B in the following reactions, and explain the reason for stereoselectivity of the following reaction. Figures may be added if necessary. When enantiomers are formed, draw only one of them.) この問題はヒドロホウ素化の基礎的知識を問う。(These questions test basic knowledge of hydroboration.)

協奏的なシン付加で進行するとともに、右に示すように四中心の遷移状態での立体障害を避け、炭素上に生成する部分的な陽電荷を安定化するように、anti-Markovnikov 配向に従うため。(Because the reaction proceeds via a concerted syn addition, following anti-Markovnikov orientation to avoid steric hindrance in the four-centered transition state and to stabilize the partial positive charge generated on the carbon, as shown on the right.)

2025 年 10 月,2026 年 4 月入学(October 2025 and April 2026 Admissions) 中国大学大学院生活理工艺科学研究科博士理程前期(一些课法) 東明科日入学計略

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

		(200	25 0/120 1/0/15	/ 1145abt 20, 2020/
試験科目 応用化学(専門科目 I) Subject Applied Chemistry I	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション (Smart Innovation)	受験番号 Examinee's Number	М

問題 1 (Problem 1) 続き (Continued)

4. 次の反応における有機の主生成物を構造式で描け。必要に応じて、立体化学が分かるようにすること。エナンチオマーが生成する場合は一方のみを示すこと。(Draw the structural formula of the major organic product in each reaction. Show the stereochemistry if necessary. When enantiomers are formed, draw only one of them.) この問題は有機合成の基礎的知識を問う。(These questions test basic knowledge of organic synthesis.)

1) HOOC H Br₂ HOOC Br H H₃C
$$\rightarrow$$
 HCI H₃C \rightarrow HCI H₃

5. 適当な無機試薬を用いて、フェノールから o ブロモフェノールを選択的に合成する反応スキームを完成させよ。反応機構を示す必要はない。(Complete a reaction scheme for the selective synthesis of o-bromophenol from phenol using suitable inorganic reagents. It is not necessary to show the reaction mechanism.) この問題は芳香族化合物の反応について基礎的知識を問う。(This question tests basic knowledge about reactions of aromatic compounds.)

6. ヘミアセタールからアセタールが生成する酸触媒反応機構を,電子対の動きを示す巻矢印表記法を用いて描け。(Draw the mechanism using curved arrows, which show the movement of electron pairs, for the production of acetal from acid-catalyzed reaction of hemiacetal.) この問題は電子対の動きを示す巻矢印表記法の理解度を問う。(This question tests the understanding of the curved arrows that show the movement of electron pairs.)

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目I)
Subject	Applied Chemistry I

プログラム	応用化学	受験番号	
Program	(Applied Chemistry) スマートイノベーション (Smart Innovation)	Examinee's Number	M
	(Smart innovation)		

問題 1 (Problem 1) 続き (Continued)

7. 分子量が 10.000, 20.000, および 30.000 の分子を等モルずつ混合したとする。この混合物の数平均分子量 M_b, 重量平 均分子量 Mw, および多分散度を有効数字 2 桁で求めよ。 (The molecules with molecular weights of 10,000, 20,000, and 30,000 were mixed in equal molar amounts. Calculate the number-average molecular weight M_n , weight-average molecular weight M_w , and polydispersity of this mixture to two significant figures.) この問題は平均分子量の理解を問う。(These questions test the understanding of the average molecular weight.) $M_{\rm p} = 2.0 \times 10^4$

 $M_{\rm w} = 2.3 \times 10^4$

多分散度 (polydispersity)=1.2

8. ヘキサメチレンジアミンとアジピン酸との重縮合により、6.6-ナイロンが得られる。この反応について以下の問いに答 ₹ \$\dagger\$ (6.6-Nylon is obtained from the polycondensation of hexamethylenediamine and adipic acid. Answer the following questions on this reaction.) この問題は重縮合の基礎知識を問う。(These questions test the basic knowledge of polycondenstaion.)

1) N_A モルのヘキサメチレンジアミンと N_B モルのアジピン酸($N_A/N_B=r,N_A\leq N_B,0\leq r\leq 1$)を用いて重縮合により 6,6-ナイ ロンを合成したとき、ヘキサメチレンジアミンの反応度がp(0<p<1)であったとする。このときの生成ポリマーの数平 均重合度 x_n を仕込み比rと反応度pを用いて表す式を導け。(When a 6,6-nylon was synthesized by polycondensation from N_A mol of hexamethylenediamine and N_B mol of adipic acid $(N_A/N_B = r, N_A \le N_B, 0 \le r \le 1)$, the degree of the reaction of the hexamethylenediamine was assumed as p ($0 \le p \le 1$). Derive the equation indicating the number-average degree of polymerization x_n of the resulting polymer by using r and p.)

初期モノマー分子数 (initial number of monomer molecules): $N_A + N_B = N_A (1 + 1/r)$

反応度 p における全分子数 (number of molecules at degree of the reaction p): $N_A(1-p)+(N_B-N_Ap)=N_A(1-p)+(N_A/r-N_Ap)+(N_A/r-N_Ap)+(N_AP)+(N_A/r-N_Ap)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+(N_AP)+$ $N_A(1-p+1/r-p) = N_A[2(1-p)+1/r-1] = N_A[2(1-p)+(1-r)/r]$

$$x_{\rm n} = rac{ 初期モノマー分子数 ext{ (initial number of monomer molecules)}}{ 反応度 p における全分子数 ext{ (number of molecules at degree of the reaction $p)}} = rac{N_{\rm A}(1+1/r)}{N_{\rm A}[2(1-p)+(1-r)/r]} = rac{1+r}{2r(1-p)+(1-r)}$$$

$$= \frac{N_{A}(1+1/r)}{N_{A}[2(1-p)+(1-r)/r]} = \frac{1+r}{2r(1-p)+(1-r)}$$

2) 1)に基づいて、高分子量の 6,6-ナイロンを得るために必要な条件を二つ、箇条書きで記せ。(Itemize two requirements to obtain a high molecular-weight 6,6-nylon based on 1).)

- pを1に近づける, 反応度を上げる。(Bring p closer to 1, or increase the degree of the reaction.)
- ・rを1に近づける、両モノマーの仕込み量を等しくする。(Bring r closer to 1, or feed both monomers in equimolar amounts.)
- 3) ヘキサメチレンジアミンとアジピン酸からナイロン塩が生成する反応式を描き、6.6-ナイロンをナイロン塩から合成す る利点を説明せよ。(Draw the reaction equation in which nylon salt is produced from hexamethylenediamine and adipic acid, and explain the advantage of synthesizing 6,6-nylon from nylon salt.)

反応式 (reaction equation): $NH_2(CH_2)_6NH_2 + HOCO(CH_2)_4COOH \rightarrow [H_3N^+(CH_2)_6N^+H_3][-OCO(CH_2)_4COO-]$

利点 (advantage): ヘキサメチレンジアミンとアジピン酸を確実に等モル仕込むことができる。(Hexamethylenediamine and adipic acid can be fed in equal molar amounts.)

9. 以下の重付加反応により生成するポリマーの化学構造式を描け。(Draw the structural formulas of the polymers obtained from the following polyaddition reactions.) この問題は重付加の基礎知識を問う。(These questions test the basic knowledge of polyaddition.)

1)
$$H_{2}N-R-NH_{2}$$
+
$$OCN-R'-NCO$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

$$(H_{N-R-N-C-N-R'-N-C'_{n}})$$

2025 年 10 月, 2026 年 4 月入学 (October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目 応用化学(専門科目 I) Subject Applied Chemistry I	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション (Smart Innovation)	受験番号 Examinee's Number	М
--	------------------	---	---------------------------	---

問題 2 (Problem 2) 問題用紙は 2 枚あります (two sheets for Problem 2)

1. 次の熱力学に関する語句を簡潔に説明せよ。(Explain briefly the following terms related to thermodynamics.) 出題の意図 (Intent of the question): 熱力学における基本事項に関する知識と理解を問う。(Testing knowledge and understanding of the fundamentals of thermodynamics.)

1) 熱力学第一法則 (first law of thermodynamics)

孤立系の内部エネルギーは一定である。熱と仕事はどちらもエネル ギー移動の一形態であり、系になされた仕事をw、系に移動した熱 をqとすると、系の内部エネルギーの変化 ΔU は、 $\Delta U = q + w$ రం. (The internal energy of an isolated system is constant. Heat and work are both forms of energy transfer. If the work done on the system is w and the heat transferred to the system is q, the change in the internal energy of the system ΔU is given by $\Delta U = q + w$.)

3) 化学ポテンシャル (chemical potential)

混合物に含まれている物質の部分モルギブズエネルギーのこと。成分1の化学ポテンシャルは圧力と温度、ほかの成分の物質量を一定に保ったときの系のギブズエネルギーの成分1の物質量依存性となる。純物質では、モルギブズエネルギ そのもの。(This refers to the partial molar Gibbs energy of the substances contained in a mixture. The chemical potential of component J is the dependence of the Gibbs energy of the system on the amount of component J when the pressure, temperature, and amounts of other components are kept constant., For pure substances, it is the molar Gibbs energy itself.)

2) カルノーサイクル (Carnot cycle)

燃料から動力をいかに効率よく生み出すかという課題を考察するための理 論サイクルで、高温熱源と低温熱源を利用して、等温可逆膨脹、断熱可逆膨 等温可逆圧縮,断熱可逆圧縮の連続する4つの変化から構成される。最 大効率は熱の入出の温度のみで決まる。(A theoretical cycle for examining how to efficiently generate power from fuel. It utilizes high-temperature and low-temperature heat sources and consists of four consecutive changes: isothermal reversible expansion, adiabatic reversible expansion, isothermal reversible compression, and adiabatic reversible compression. Maximum efficiency is determined solely by the temperature of heat input and output.)

4) 三重点 (triple point)

物質の異なる3相が共存して平衡状態にある温度と圧力のこと。相図におい て、3 本の境界線が交差する点のこと。純物質の三重点は物質ごとに決まっ た圧力・温度で起こり、それらの条件を変えることはできない。(The temperature and pressure at which three different phases of a substance coexist in equilibrium. In a phase diagram, this refers to the point where three boundary lines intersect. The triple point of a pure substance occurs at a fixed pressure and temperature for each substance, and these conditions cannot be changed.)

2. 125gの液体のメタノール(モル質量 32.0g mol⁻¹)を 100 kPa, 298 K から 300 kPa, 366K に変化させたときのエンタル ピー変化を計算せよ。これらの条件下において、メタノールは液体状態と仮定し、その密度と定圧モル熱容量 C_{pm} はそれ ぞれ 0.791 g cm⁻³ と 81.1 J K⁻¹ mol⁻¹ で一定とする。(Calculate the change in enthalpy when 125 g of liquid methanol (molar mass, 32.0 g mol-1) initially at 100 kPa and 298 K undergoes a change of state to 300 kPa and 366 K. Under these conditions, methanol is assumed to be in a liquid state, and its density and specific molar heat capacity at constant pressure, C_{p,m}, remain unchanged at 0.791 g cm⁻³ and 81.1 J K⁻¹ mol⁻¹, respectively.)

出題の意図 (Intent of the question): 温度と圧力が同時に変化したときの液体のエンタルピー変化に関する理解 を問う。(Testing understanding of the enthalpy change of a liquid when temperature and pressure change simultaneously.)

Ans. 21.6 kJ

3. ナフタレン(モル質量 128gmol-1)とアントラセン(モル質量 178gmol-1)の混合物 8.0g をベンゼン 400g に溶解さ せると、その溶媒の凝固点は、純粋なベンゼンの凝固点 (279 K) よりも $0.70\,\mathrm{K}$ 低くなった。ベンゼンの凝固点降下定数 K_f を 5.1 K kg mol⁻¹ として、混合物中に含まれるナフタレンの質量を計算せよ。 (When 8.0 g of a mixture of naphthalene (molar mass, 128 g mol⁻¹) and anthracene (molar mass, 178 g mol⁻¹) was dissolved in 400 g of benzene, the freezing point of the solvent was 0.70 K lower than that of pure benzene (279 K). Calculate the mass of naphthalene in the mixture, given that the freezing-point constant, K_f , for benzene is 5.1 K kg mol⁻¹.)

出題の意図 (Intent of the question): 東一的性質である凝固点降下と混合物の物質量との関係について理解を問う。 (Testing understanding of the relationship between the colligative property of freezing point depression and the amount of substance in a mixture.)

2025年10月, 2026年4月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目 I)
Subject	Applied Chemistry I

プログラム	応用化学	受験番号	
Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
	(Smart Innovation)		

問題2 (Problem 2) 続き (Continued)

- 4. 量子論に関する以下の問いに答えよ。ただし、プランク定数は $6.626 \times 10^{-34} \, \mathrm{Js}$ 、アボガドロ定数は $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ 、電子の質量は $9.109 \times 10^{-31} \, \mathrm{kg}$ 、電気素量は $1.602 \times 10^{-19} \, \mathrm{C}$ 、光の速度は $2.998 \times 10^8 \, \mathrm{m} \, \mathrm{s}^{-1} \, \mathrm{c}^{-1}$ る。 (Answer the following questions related to the quantum theory. Use the following constants, if needed: Planck constant, $6.626 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}$; Avogadro constant, $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$; mass of an electron, $9.109 \times 10^{-31} \, \mathrm{kg}$; elementary charge, $1.602 \times 10^{-19} \, \mathrm{C}$; speed of light, $2.998 \times 10^8 \, \mathrm{m} \, \mathrm{s}^{-1}$.)
- 1) ある金属の仕事関数は 2.30 eV である。この金属に波長 400 nm の光を照射した。(The work function of a certain metal is 2.30 eV. Light with wavelength of 400 nm is irradiated to this metal.)
 - (a) 入射光のフォトン 1 個当たりのエネルギーを求めよ。(Calculate the energy of one photon.)
 - (b) 放出される光電子の最大運動エネルギーを求めよ。(Calculate the maximum kinetic energy of the photoelectron.)
 - (a) $4.97 \times 10^{-19} \text{ J} = 3.10 \text{ eV}$ (b) $8.00 \times 10^{-1} \text{ eV} = 1.28 \times 10^{-19} \text{ J}$
- 2) 運動エネルギーが 150 eV の電子の速度とド・ブロイ波長を求めよ。(Calculate the speed and de Broglie wavelength of an electron with kinetic energy of 150 eV.)

 $7.27 \times 10^6 \,\mathrm{m\cdot s^{-1}}$ $1.00 \times 10^{-10} \,\mathrm{m}$

3) 電子の位置が $100 \, \text{pm}$ の不確かさでわかっているとする。その電子の運動量の不確かさ(Δp)の下限を求めよ。(Suppose an electron's position is measured within an uncertainty of $100 \, \text{pm}$, calculate the minimum uncertainty in momentum (Δp).)

 $5.28 \times 10^{-25} \text{ kg·m·s}^{-1}$.

4) 長さ 1.00 nm の 1 次元の箱の中に電子が閉じ込められている。基底状態と第 2 励起状態のエネルギー差を求めよ。 (Calculate the energy gap between the second excited state and the ground state of an electron in a one-dimensional box with length of 1.00 nm.)

3.01 eV

5) ¹H₂分子の結合を調和振動子とみなし, 力の定数 500 N m⁻¹ を用いて基底状態と第1 励起状態のエネルギー差を求めよ。 (Consider the bond in ¹H₂ molecule as a harmonic oscillator. Using a force constant of 500 N m⁻¹, calculate the energy gap between the first excited state and the ground state.)

 $8.19 \times 10^{-20} \text{ J}.$

出題の意図:量子論に関する基礎知識と応用力を問う。(Measures basic knowledge and application skills of quantum theory.)

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目 応用化学(専門科目 I) Subject Applied Chemistry I	プログラム Program	応用化学 (Applied Chemistry) スマートノバーション (Smart Innovation)	受験番号 Examinee's Number	М
---	------------------	---	---------------------------	---

問題3 (Problem 3) 問題用紙は2 枚あります (two sheets for Problem 3)

- 1. 2. 無機化学および分析化学に関する基礎知識を問う問題。 Questions testing basic knowledge of inorganic and analytical chemistry.
- 1. 次の括弧 [] 内の選択肢のうち、問いで求めるものを選び解答欄に記せ。また、①、②については理由を述べよ。 (Answer the questions by selecting the correct answer from the alternatives given in parentheses []. The correct answer should be given in the answer column. Describe the reasons for ① and ②.) ① [SF₆, IF₅] 結合角が大きい化学種 (Which has larger bond angle?)
- ② [O₂, O₂⁻] 結合距離が長い化学種 (Which has larger bond length?)
- ③ [MgAl₂O₄, MgO, Mg(OH)₂] Mg²⁺イオンが最も小さなイオン半径を持つと考えられる化合物 (Which compound is assumed to have the smallest ionic radius for Mg²⁺?)
- ④ [Ga, Ge, As] 第一イオン化エネルギーの最も小さい元素 (Which has the smallest first ionization energy?)
- ⑤ [Si, P, S] 電子親和力が最も小さい元素 (Which has the smallest electron affinity?)
- ⑥ [S²-, Cl-, K+, Ca²+] 六配位において最もイオン半径の大きいイオン (Which has the largest ionic radius with the coordination number of 6.)
- ⑦ [Co²+(LS), Co²+(HS), Co³+(HS)] 低スピン状態(LS)または高スピン状態(HS)を考慮した場合, 八面体配位において最もイオン半径の大きいイオン (In an octahedral coordination, which has the largest ionic radius? Consider the difference between low spin (LS) and high spin (HS) configurations.)
- ⑧ [O, F, Ne] オールレッド・ロコウの電気陰性度が最も大きい元素 (Which has the largest electronegativity determined by Allred and Rochow?)
- ⑨ [3s, 3dx2-y2, 3dz2] 節面が平面から成る原子軌道 (Which atomic orbital has nodal surface consisting of flat planes?)
- ⑩ [Fe²+, Co²+, Ni²+] 高スピンの四面体配位にあって、結晶 場安定化エネルギーで最も大きな安定化を受けるイオン (In a tetrahedral high spin configuration, which ion is the most stabilized by obtaining a crystal field stabilization energy?)
- ① [Na+, Mg²⁺, Al³⁺] 水和により最も安定化するイオン (Which ion is the most stabilized by hydration?)

周期表の一部 (a part of periodic table of the elements)

Na	Mg											Al	Si	P
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi

解答欄 (Answers)

州中台州南(AIII	,,,,,,	(1)							
答 (Answer) 理由 (Reason) SF6 理由 (Reason) IF5 は 1 個ある lone pair が広い空間を占める ことで正方錐形から歪み、すべての結合を が 90°より小さくなる。SF6 は正八面体であり、結合角は 90°。									
	<u> </u>	2							
答 (Answer) 理由 (Reason) O ₂ -は O ₂ の反結合性軌道(2pπ*)に電子が 1個加わった電子配置をとるから、結合次数が 1.5 となり結合距離が長くなる。									
3	4	5	6	7					
MgAl ₂ O ₄	Ga	P	S ²⁻	Co ²⁺ (HS)					
8	- 9	10	(1)						
Ne	3d _{x2-y2}	Co ²⁺	Al ³⁺						

- 2. 次の語句を説明せよ。(Explain the following terms.)
- 1) 固有欠陥 (intrinsic defects)

結晶中に熱力学的平衡状態で必ず存在する欠陥。

2) フェルミ準位 (Fermi level)

固体のバンド構造において、熱力学的平衡状態において電子の占有確率が1/2となるエネルギー。

3) マリケンの電気陰性度 (Mulliken electronegativity)

イオン化エネルギーと電子親和力の相加平均として Mulliken が定義した電気陰性度のこと。

4) ゲル電気泳動 (gel electrophoresis)

電荷をもつ分子 (核酸やタンパク質など) を、電場を印加したヒドロゲル中の移動度の違いに基づいて分離する手法。

5) 原子間力顕微鏡 (atomic force microscope (AFM))

探針を試料表面に近づける時に生じる探針と表面原子 との引力もしくは反発力により、試料表面の構造を観 察する測定手法。

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目I)	プログラム		受験番号	
Subject	Applied Chemistry I	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 問題用紙は2 枚あります (two sheets for Problem 3)

- 1. 2. 無機化学および分析化学に関する基礎知識を問う問題。 Questions testing basic knowledge of inorganic and analytical chemistry.
- 1. 次の括弧 [] 内の選択肢のうち、問いで求めるものを選び解答欄に記せ。また、①、②については理由を述べよ。 (Answer the questions by selecting the correct answer from the alternatives given in parentheses []. The correct answer should be given in the answer column. Describe the reasons for ① and ②.) ① [SF6, IF5] 結合角が大きい化学種 (Which has larger bond
- angle?) ② $[O_2, O_2^-]$ 結合距離が長い化学種 (Which has larger bond length?)
- ③ [MgAl₂O₄, MgO, Mg(OH)₂] Mg²⁺イオンが最も小さなイオン半径を持つと考えられる化合物 (Which compound is assumed to have the smallest ionic radius for Mg²⁺?)
- ④ [Ga, Ge, As] 第一イオン化エネルギーの最も小さい元素 (Which has the smallest first ionization energy?)
- ⑤ [Si, P, S] 電子親和力が最も小さい元素 (Which has the smallest electron affinity?)
- ⑥ [S²-, Cl-, K+, Ca²+] 六配位において最もイオン半径の大きいイオン (Which has the largest ionic radius with the coordination number of 6.)
- ⑦ [Co²+(LS), Co²+(HS), Co³+(HS)] 低スピン状態(LS)または高スピン状態(HS)を考慮した場合, 八面体配位において最もイオン半径の大きいイオン (In an octahedral coordination, which has the largest ionic radius? Consider the difference between low spin (LS) and high spin (HS) configurations.)
- ⑧ [O, F, Ne] オールレッド・ロコウの電気陰性度が最も大きい元素 (Which has the largest electronegativity determined by Allred and Rochow?)
- ⑨ [3s, 3dx2-y2, 3dz2] 節面が平面から成る原子軌道 (Which atomic orbital has nodal surface consisting of flat planes?)
- ⑩ [Fe²+, Co²+, Ni²+] 高スピンの四面体配位にあって、結晶 場安定化エネルギーで最も大きな安定化を受けるイオン (In a tetrahedral high spin configuration, which ion is the most stabilized by obtaining a crystal field stabilization energy?)
- ① [Na+, Mg²⁺, Al³⁺] 水和により最も安定化するイオン (Which ion is the most stabilized by hydration?)

周期表の一部 (a part of periodic table of the elements)

Na	Mg											Al	Si	P
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi

解答欄 (Answers)

解答欄 (Answers)					
	1)				
答 (Answer)	理由 (Reaso	n)			
SF ₆	IF ₅ is distorted square pyramidal since it has a lone pair that occupies larger space than bonding pair. Bond angle of SF ₆ equals exact 90°.				
		2			
答 (Answer)	理由 (Reaso	n)			
O ₂ ⁻	Because O_2^- is generated by adding one electron to an antibonding orbital $(2p\pi^*)$ of O_2 .				
3	4	5	6	7	
MgAl ₂ O ₄	Ga	P	S ²⁻	Co ²⁺ (HS)	
8	9	(10)	(1)		
Ne	3d _{x2-y2}	Co ²⁺	Al ³⁺		

- 2. 次の語句を説明せよ。(Explain the following terms.)
- 1) 固有欠陥 (intrinsic defects)

Defects that inevitably exist in a thermodynamic equilibrium state within a crystal.

2) フェルミ準位 (Fermi level)

The energy level at which the electron occupancy probability is 1/2 in the thermodynamic equilibrium state of a solid's band structure.

3) マリケンの電気陰性度 (Mulliken electronegativity)

The electronegativity defined by Mulliken as the arithmetic mean of ionization energy and electron affinity.

- 4) ゲル電気泳動 (gel electrophoresis)
 - A technique for separating charged molecules (such as nucleic acids and proteins) based on differences in their mobility within a hydrogel under an applied electric field.
- 5) 原子間力顕微鏡 (atomic force microscope (AFM))

A measurement technique for observing the surface structure of a sample by utilizing attractive or repulsive forces between a probe and surface atoms as the probe approaches the sample surface.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

			V 0	1 0 / 4 _ 0 / 1 / 0 / 0 / 0	
試験科目 Subject	応用化学(専門科目 I) Applied Chemistry I	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション	受験番号 Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 続き (Continued)

3. 次の文章を読み,以下の1)と2)の問いに答えよ。(Read the following text and answer questions of 1) and 2).)

アンモニアボランはルイス(①)であるアンモニアとルイス(②)であるボランが(③)結合した化合物であり、(④)の C-C 結合を B-N 結合で置き換えた構造をとる。(Ammonia borane is a compound formed with ammonia, which acts as a Lewis(①), and borane, which acts as a Lewis(②), by the(③) bond. It has an isostructure in which the C-C bond of(④) is replaced by a B-N bond.)

- 1) 文章中の①~④にあてはまる最も適切な語句を答えよ。 (Answer the most appropriate word that fits each of ①-④ in the text.)
- ① 塩基 (base)

② 酸 (acid)

③ 配位 (coordination)

④ エタン (ethane)

2) アンモニアボラン中の B-H 結合と N-H 結合の長さを 比べたとき、どちらが長いかについて、そのようになる理 由とともに答えよ。(Answer which bond is longer, the B-H bond or the N-H bond in ammonia borane, along with the reason.)

B-N 間で配位結合を形成するとB が負電荷を帯び、N が正電荷を帯びる。その結果、H との共有結合をつくる際に、N は共有電子対をより引きよせやすく、B は共有電子対をより引き寄せにくくなる。その結果、B-H結合のほうがN-H結合より長くなる。(When a coordinate bond is formed between B and N, B acquires a negative charge while N acquires a positive charge. As a result, when forming a covalent bond with H, N tends to attract the shared electron pair more easily, whereas B tends to attract the shared electron pair less easily. Consequently, the B-H bond becomes longer than the N-H bond.)

【出題の意図】化学結合などに関する理解度を確認する。

[Intention of problem] It is intended to check the understanding of chemical bonding, etc.

- 4. 次のa)~j)の化合物のうち、酸化数が+3 となっている元素を含む化合物をすべて選べ。(Of the following compounds a)-j), answer all the compounds that contain element(s) with oxidation number of +3.)
- a) AlF₃ b) GaCl₂ c) PbBr₂ d) TlI₃ e) Mn₃O₄ f) SrTaO₂N
- g) LaTiO₂N h) KMnO₄ i) [PtCl₂(NH₃)₂] j) Fe₄[Fe(CN)₆]₃ (出題の意図) 元素の酸と状態に関する理解度を確認する。

[Intention of problem] It is intended to check the understanding of the oxidation states of elements.

a), b), e), g), j)

5. クロム(Cr) (Z=24)の 4s 電子に対する有効核電荷($Z_{\rm eff}$) をスレーター則によって計算せよ。(Calculate the effective nuclear charge ($Z_{\rm eff}$) for the 4s electron(s) of chromium (Cr) (Z=24) using Slater's rules.)

Cr の基底状態の電子配置は(15°(2s)°(2p)°(3s)°(3p)°(3d)°(4s)¹ だから、Z_{ef}=24.0~(0.35×0+0.85×13+1.0×10)=<u>2.95</u> (The ground state electron configuration of Cr is (1s)°(2s)°(2p)°(3s)°(3p)°(3d)°(4s)¹. Therefore, Z_{ef}=24.0~(0.35×0+0.85×13+1.0×10)=<u>2.95</u>)

【出題の意図】元素の電子配置ならびで有効核電荷の求め方に関する理解度を確認する。 【Intention of problem】 It is intended to check the understanding of how to determine the electron configuration and effective nuclear charge of elements. dm⁻³)がある。 1.0×10^{-6} mol の HA を溶解させた酸性溶液に対してある塩基を加えて滴定した。溶液全量が 1.0×10^{2} cm³ で呈色したときの pH を求めよ。ただし,呈色は溶液中の[A⁻] = 5.0×10^{-6} mol dm⁻³ で生じるものとする。(A monochromatic indicator, HA, which is a weak acid with an acid dissociation constant $K_{HA} = 2.0 \times 10^{-10}$ mol dm⁻³, is used. A quantity of 1.0×10^{-6} mol of HA is dissolved in an acidic solution, and the solution is titrated by adding a base. Calculate the pH at the point when the solution changes color, given that the total volume is 1.0×10^{2} cm³. Assume that the color change occurs when the concentration of A⁻ in the solution reaches 5.0×10^{-6} mol dm⁻³.)

pH 9.7

出題意図: pH 指示薬の原理と平衡に関する基本的な考え方の理解度を測る(Testing the understanding of the principles and equilibrium concepts behind pH indicators.)

7. 二色指示薬 HX(酸解離定数 $K_{\rm HX}=2.0\times10^{-4}\,{\rm mol\,dm^{-3}}$)は [X-]/[HX]の値が $0.1\sim10$ の範囲をとるとき,溶液中の pH に応じて色が徐々に変化する。この変色域を pH の値で示せ。 (A dichromatic indicator HX (acid dissociation constant $K_{\rm HX}=2.0\times10^{-4}\,{\rm mol\,dm^{-3}}$) gradually changes color depending on the pH of the solution when the ratio [X-]/[HX] is in the range of 0.1 to 10. Answer the pH range over which this color change occurs.)

2.7≦pH≦4.7

出題意図:pH 指示薬の原理と平衡に関する基本的な考え方の理解度を測る(Testing the understanding of the principles and equilibrium concepts behind pH indicators.)

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

				\ <u></u>		, 1108001 20, 2021
言	式験 科目	応用化学(専門科目II)	プログラム		受験番号	
	Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
				(Smart Innovation)		

問題 1 (Problem 1) 問題用紙は3 枚あります (three sheets for Problem 1)

1. ベンゼンを出発物質として,以下の化合物を合成する反応式を完成させよ。(Complete the reaction schemes for the following compounds, using benzene as a starting material.) この問題は背景が終化物の反応に関する知識を問う。(This question tests knowledge of the reaction of aromatic compounds)

2)
$$\frac{\text{HNO}_3}{\text{H}_2\text{SO}_4} \longrightarrow \frac{\text{NO}_2}{\text{NO}_2} \xrightarrow{\text{SnCl}_2} \longrightarrow \frac{\text{NH}_2}{\text{NaHCO}_3} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NANO}_2} \xrightarrow{\text{KI}} \longrightarrow \frac{\text{NH}_2}{\text{NaNO}_2} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NaNO}_2} \xrightarrow{\text{NH}_2} \xrightarrow{\text{NaNO}_2} \xrightarrow{\text{NNO}_2} \xrightarrow$$

2. アルキル基の転位を伴う反応について、以下の問いに答えよ。(Answer the following questions about the reactions involving rearrangement of alkyl groups.) この問題はアルキル基の転位を伴う反応の無熱問う。(This question tests knowledge of the reactions involving alkyl group rearrangement.)

1) シクロヘキサノンが過安息香酸との反応で & カプロラクトンに変換される反応の機構を、電子対の動きを示す巻矢印表記法を用いて描け。(Draw the mechanism using curved arrows, which show the movement of electron pairs, for the reaction from cyclohexanone and perbenzoic acid to & caprolactone.)

2) アセチルアジド (CH₃CON₃) の共鳴構造式を描け。さらに、アセチルアジドがメチルイソシアナート (CH₃NCO) に変換される反応の機構を、電子対の動きを示す巻矢印表記法を用いて描け。(Draw the resonance form of acetyl azide (CH₃CON₃). Draw the mechanism using curved arrows, which show the movement of electron pairs, for the reaction from acetyl azide to methyl isocyanate (CH₃NCO).)

共鳴構造式 (resonance form)	反応機構 (reaction mechanism)
$ \begin{array}{cccc} & N=N=N \\ & \oplus & \ominus & \longrightarrow & \bigcirc & \oplus \\ & O & & O \end{array} $	$ \begin{array}{ccc} & N-N\equiv N & -N_2 \\ & \odot & \oplus & \\ & O & & \\ \end{array} $ $ \begin{array}{ccc} & N=C=O \\ & O & & \\ \end{array} $

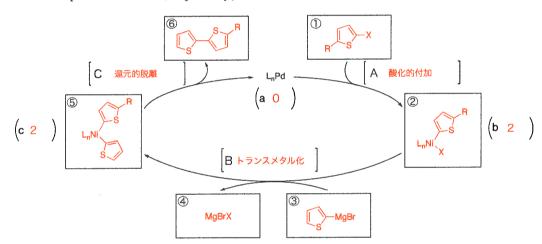
- 3. 以下にあてはまる,分子式 C₅H₁₀ で表される化合物の構造式を描け。エナンチオマーが存在する場合は一方のみを示すこと。 (Draw the structural formula of the compound with the molecular formula of C₅H₁₀ that corresponds to each following information. When enantiomers exist, draw only one of them.) この問題は有機化合物の構造決定に関する知識を問う。
- 1) 光学活性を示す化合物 (optically active compound(s)) (This question tests knowledge of structural identification of organic compounds.)
- 2) ¹H NMR において下記の化学シフト値を示す化合物 (compounds giving the following chemical shifts in the ¹H NMR)
 (a) ¹H NMR: δ = 1.51 (10H s) ppm
 (b) ¹H NMR: δ = 5.19 (1H, q), 1.68 (3H, s), 1.60 (3H, s), 1.56 (3H, d) ppm

(a) 1 H NMR: $\delta = 1.51$ (10H, s) ppm	(b) 1 H NMR: δ = 5.19 (1H, q), 1.68 (3H, s), 1.60 (3H, s), 1.56 (3H, d) ppm			
1)	2) (a)	2) (b)		
·····				

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)


(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目Ⅱ)	プログラム		受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題1 (Problem 1) 続き (Continued)

4. 下記の熊田-玉尾-コリューカップリング反応による一置換ビチオフェンの合成について、以下の問いに答えよ。なお、R は置換基、X はハロゲン、L は形式電荷をもたない配位子とする。(Answer the following questions regarding the synthesis of the mono-substituted bithiophene using the Kumada-Tamao-Corriu cross-coupling reaction shown below. "R" is a substituent, "X" is a halogen, "L" is a ligand having no formal charge.)

1) ①~⑥の 内に最も適切な構造式を記入し,以下の触媒サイクルを完成させよ。また,a~c の()内にパラジウムの形式酸化数,A~C の [] 内に各素反応の名称をそれぞれ書け。 (Complete the catalytic cycle of the reaction shown below by drawing a structural formula in the square blanks ①-⑥. Give the formal oxidation states of nickel and the name of elementary reactions in the parentheses a-c and square brackets A-C, respectively.)

2) ハロゲン化チオフェンの置換基 R がアルキル基とニトリル基の場合, 生成物の収率が高いのはどちらの場合か。理由 とともに答えよ。 (When the substituent R of halogenated thiophene is an alkyl group or a nitrile group, which case yields a higher product yield? Also explain the reason.)

置換基 (substituent): アルキル基 (alkyl group)

理由 (reason): ニトリル基の場合,有機マグネシウム化合物がニトリル基を求核攻撃する副反応が起こる。 (In the case of nitrile groups, the organomagnesium compound attacks the nitrile group nucleophilically.)

3) 2)で生成物の収率が低くなると考えられる場合において、生成物の収率を向上させるための工夫例を 1 つ挙げ、理由を簡潔に説明せよ。(In the case where the product yield is expected to be lower in 2), propose one modification to the reaction or reaction conditions that could improve the product yield. Also explain the reason briefly.)

工夫例 (modification): 有機マグネシウム化合物を有機亜鉛化合物に変更する。(Change the organomagnesium compound to an organozinc compound.)

理由 (reason): 有機亜鉛化合物は有機マグネシウム化合物より求核性が低く, ニトリル基に求核攻撃しにくくなる。 (Organozinc compounds are less nucleophilic than organomagnesium compounds and are less likely to attack the nitrile group nucleophilically.)

4) ハロゲン化チオフェンのハロゲン X がヨウ素と塩素の場合,生成物の収率が高いのはどちらの場合か。理由とともに答えよ。 (When the halogen X of halogenated thiophene is an iodine atom or a chlorine atom, which case yields a higher product yield? Also explain the reason.)

ハロゲン (halogen):ヨウ素 (iodine)

理由 (reason): C-I 結合の方が C-Cl 結合より弱いため、ヨウ化物を用いた方が酸化的付加が進行しやすい。(Since the C-I bond is weaker than the C-Cl bond, oxidative addition is more likely to proceed with iodide.)

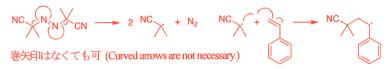
広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

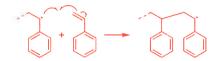
Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

試験科目	応用化学(専門科目Ⅱ)
Subject	Applied Chemistry II


プログラム	応用化学	受験番号	
Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
	(Smart Innovation)		


問題1 (Problem 1) 続き (Continued)

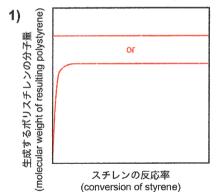
- 5. スチレンの重合について、以下の問いに答えよ。(Answer the following questions on the polymerization of styrene.)
- 1) 開始剤としてアゾビスイソブチロニトリル (AIBN) を用いたスチレンの重合における開始反応と成長反応の反応式を描け。 (Draw the initiation and propagation reaction equations in the polymerization of styrene using azobis(isobutyronitrile) (AIBN) as an initiator.) この問題はラジカル重合の反応機構に関する知識を問う。 (This question tests knowledge of the reaction mechanism of radical polymerization.)

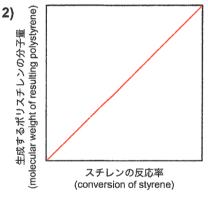
開始反応 (initiation reaction)

成長反応 (propagation reaction)

2) 以下のスチレンの重合はリビング的に進行する。その理由を簡潔に説明せよ。(The following polymerization of styrene proceeds in a living manner. Briefly explain the reason.)

この問題はリビング重合に関する理解を問う。


(This question tests understanding of living polymerization.)

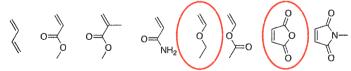

ドーマント種が可逆的に活性種になり、

その濃度が非常に低く副反応を抑えられるため。

(This is because the dormant species reversibly transforms into the active species, maintaining an extremely low concentration and thereby suppressing side reactions.)

3) 上記 1)と 2)の重合について、右のグラフ 1)と 2)に、それぞれスチレンの反応率(転 化率)に対して生成するポリスチレンの分 子量の関係を描け。(Draw the relationship between the conversion of styrene and the molecular weight of the resulting polystyrene for the above polymerizations 1) and 2) in graphs 1) and 2) on the right, respectively.)

この問題はリビング重合に関する理解を問う。 (This question tests understanding of living polymerization.)


4) 上記 1)や 2)の重合に 1,4-ジビニルベンゼンを添加したときに生成する高分子の構造上の特徴を簡潔に述べよ。(Briefly describe the structural characteristics of the polymer obtained when 1,4-divinylbenzene is added to the above polymerizations in 1) and 2).)

この問題は高分子の構造に関する知識を問う。 (This question tests knowledge of polymer structure.)

分岐構造や架橋構造を有する。

(The polymer has branched and cross-linked structures.)

5) 以下のモノマーの中から、上記 1)と 2)に示す重合と同様の機構では単独重合しないものを二つ選び、○で囲め。(Select two monomers from the list below that cannot undergo homopolymerization by similar mechanisms used in the above polymerizations 1) and 2) and circle them.)

この問題はモノマーのラジカル重合の反応性に関する知識を問う。 (This question tests knowledge of monomer reactivity in radical polymerization.)

6. 高分子の絶対分子量と相対分子量を測定する方法をそれぞれ一つずつ挙げよ。(Give one method for measuring the absolute molecular weight and one method for measuring the relative molecular weight of polymers.)

絶対分子量 (absolute molecular weight)

相対分子量 (relative molecular weight)

NMR, 静的光散乱 (static light scattering), MALDI-MS,

サイズ排除クロマトグラフィー (size exclusion chromatography, SEC),

浸透圧 (osmometry)

粘度 (viscometry),動的光散乱 (dynamic light scattering)

この問題は高分子の分子量の測定方法に関する知識を問う。(This question tests knowledge of methods for determining the molecular weight of polymers.)

2025年10月,2026年4月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

				- 1 0 / 3 - 0 1 / 200	110000 -0, -1/
試験科目	応用化学(専門科目Ⅱ)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題 2 (Problem 2) 問題用紙は3 枚あります (three sheets for Problem 2)

1. ある分解反応が、300 K では24 分で、380 K では2.0 分で、それぞれ25 %完了する。この反応の活性化エネルギーを求めよ。ただし、頻度因子 A は温度によらず一定であり、気体定数 $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$ とする。(A decomposition reaction is 25 % complete in 24 min at 300 K and in 2.0 min at 380 K. Estimate the activation energy of the decomposition reaction. The frequency factor A is constant in any temperature. Use the gas constant $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}$, if needed.)

【解答例】【Example answer】

29 kJ mol-1

【出題の意図】【Intention of the question】

本問題の意図は、アレニウスの式に基づいて化学反応を理解できているかを確かめることである。 The intention of this question is to see understanding chemical reactions based on Arrhenius equation.

2. 反応($\mathbf{A}+\mathbf{B}\to\mathbf{P}$)は2次反応(\mathbf{A} , \mathbf{B} に対する反応次数はともに 1)である。初濃度[\mathbf{A}] = 0.060 mol dm⁻³ と初濃度[\mathbf{B}] = 0.090 mol dm⁻³ の混合溶液を反応させた。 1.0 時間後, \mathbf{A} の濃度が 0.010 mol dm⁻³ に減少した。 (a) この反応の速度定数と(b) 反応原系物質 \mathbf{A} および \mathbf{B} の半減期を求めよ。(A reaction, $\mathbf{A}+\mathbf{B}\to\mathbf{P}$, is second-order kinetics. Both the reactants \mathbf{A} and \mathbf{B} have a partial order of 1. The mixture of initial concentrations of [\mathbf{A}] = 0.060 mol dm⁻³ and [\mathbf{B}] = 0.090 mol dm⁻³ was reacted. After 1.0 h, the concentration of \mathbf{A} decreased to 0.010 mol dm⁻³. Estimate (a) the rate constant and (b) the half-life time of reactants \mathbf{A} and \mathbf{B} .)

【解答例】 【Example answer】

(a)

 $9.1 \times 10^{-3} \, dm^3 \, mol^{-1} \, s^{-1}$

(b)

 $t_{1/2}(A) = 1.1 \times 10^3 \text{ s}$

 $t_{1/2}(B) = 2.5 \times 10^3 \text{ s}$

【出題の意図】 【Intention of the question】

2種の物質の2次反応速度式を理解しているかを確かめることである。

The intention of this question is to see understanding second-order kinetics for two different substances.

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

			(= 0		2000000 / /
試験科目	応用化学(専門科目Ⅱ)	プログラム		受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題 2 (Problem 2) 続き (Continued)

- 3. 量子論に関する以下の語句を簡単に説明せよ。(Explain the following terms related to the quantum theory clearly.)
- 1) 軌道近似 (orbital approximation)
- 2) パウリの排他原理 (Pauli exclusion principle)
- 3) 電子親和力 (electron affinity)

解答例

- 1) 各電子が自分の軌道を占有していると考えることによって、厳密な波動関数についての合理的な第一近似が得られると仮定すること。(A reasonable first approximation to the exact wavefunction is obtained by assuming that each electron occupies its own orbital.)
- 2) ある軌道は2つより多い電子を収容できず、もし2つの電子が 1 つの軌道を占有するなら、それらのスピンは反平行になっていなくてはならない。(No more than two electrons may occupy any given orbital, and if two do occupy one orbital, then their spins must be anti-parallel.)
- 3) 電子親和力は、一般に原子が 1 個の電子を受け取る際に放出されるエネルギーを指す。ただし、分子や固体表面に対しても同様の概念として 用いられることがある。 (Electron affinity generally refers to the energy released when an atom gains one electron. However, the term can also be applied to molecules and solid surfaces in a broader context.)

出題意図

分子構造の理解に不可欠な量子論の基本用語について、その意味を正しく理解しているかを確認する。
(It is intended to check the understanding of basic terms in quantum theory that are essential for understanding molecular structure.)

4. 以下の式(Z: 原子番号, a_0 : ボーア半径 (5.292×10⁻¹¹ m), r: 原子核から電子までの距離)で表される水素類似原子(水素型原子)の 1s 軌道の波動関数 (ψ_{1s}) に関する以下の間いて有効数字 3 桁で答えよ。(Answer the following questions to three significant figures regarding the wavefunction of the 1s orbital (ψ_{1s}) of a hydrogen-like (hydrogenic) atom, given by the following equation. Here, Z is the atomic number, a_0 is the Bohr radius (5.292×10⁻¹¹ m), and r is the distance of the electron from the nucleus.)

$$\psi_{1s} = \left(\frac{Z^3}{\pi a_0^3}\right)^{1/2} e^{-Zr/a_0}$$

必要なら以下の積分公式を用いてもよい。(Use the following integral formula, if needed.)

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

- 1) F^{8+} において電子が見つかる確率密度(※単位体積あたりの存在確率)が最大値の 50 %となる半径を答えよ。(For F^{8+} , answer the radius at which the electron probability density (i.e., the probability per unit volume) is 50 % of its maximum value.)
- 2) Li²+の平均半径(※半径の期待値)を答えよ。(Answer the mean radius (i.e., the expectation value of the radius) of Li²+.)

解答例

1) 2.04×10^{-12} [m] = 2.04 [pm]

2) 2.65×10^{-11} [m] = 26.5 [pm]

出題意図

分子構造を理解する上で基礎となる、水素型原子の 1s 軌道に関する重要な量(確率密度・平均半径)についての理解と計算力を確認する。

(It is intended to check the understanding and calculation skills regarding key quantities (probability density and mean radius) of the 1s orbital in hydrogen-like (hydrogenic) atoms, which are fundamental to understanding molecular structure.)

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

□ (A-A-34-E	応用化学(専門科目 II)
試験科目	心用化子(导门杆日山)
Subject	Applied Chemistry II

	<u> </u>		
プログラム	応用化学	受験番号	
Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
	(Smart Innovation)		

問題2 (Problem 2) 続き (Continued)

5. 量子化学計算により水分子の平衡構造と分子軌道が以下のように得られた。表 1 には原子核座標,表 2 には各分子軌道を構成する原子軌道の係数が示されている。以下の間いに簡潔に答えよ。(The equilibrium structure and molecular orbitals of water molecule were obtained by quantum chemical calculation. Tables 1 and 2 show the nuclear coordinates and the coefficients of atomic orbitals for each molecular orbital, respectively. Answer the following questions briefly.)

表 1 水分子の原子核座標 (Table 1 Nuclear coordinates of water molecule)

原子	座標 (0	座標 (coordinates) (pm)			
(atom)	X	Y	Z		
0	0.0	0.0	12.7		
H_A	0.0	75.8	-50.8		
H _B	0.0	-75.8	-50.8		

表 2 水分子の分子軌道 $(\varphi_1 \sim \varphi_7)$ を構成する原子軌道の係数 (Table 2 Coefficients of atomic orbitals for molecular orbitals $(\varphi_1 - \varphi_7)$ of water molecule)

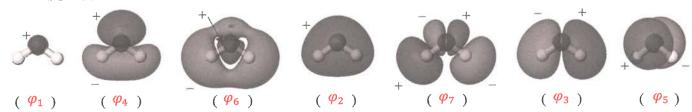
	L 1//							
原子	原子軌道	φ_1	$arphi_2$	φ_3	$arphi_4$	$\boldsymbol{\varphi}_{5}$	$arphi_6$	$oldsymbol{arphi}_7$
(atom)	(atomic orbital)	(-20.2514)	(-1.2577)	(-0.5942)	(0.4596)	(-0.3926)	(0.5822)	(0.69350)
0	1s	0.99421	-0.23375	0.00000	-0.10404	0.00000	0.12593	0.00000
0	2s	0.02586	0.84425	0.00000	0.53822	0.00000	0.82123	0.00000
0	$2p_x$	0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000
O	2p _y	0.00000	0.00000	0.61259	0.00000	0.00000	0.00000	0.96030
O	2pz	-0.00417	0.12298	0.00000	0.75620	0.00000	-0.76327	0.00000
H_A	1s	-0.00559	0.15565	0.44916	-0.29482	0.00000	-0.76964	-0.81506
H_{B}	1s	-0.00559	0.15565	-0.44916	-0.29482	0.00000	-0.76964	0.81506

カッコの中は軌道エネルギー (Hartree)。 (Orbital energies (Hartree) are in parentheses.)

水素原子(HA, HB)は表 1 の原子核座標に対応する。 (The hydrogen atoms (HA and HB) correspond to the nuclear coordinates in Table 1.)

出題の意図:分子軌道法の基礎的知識について問う問題。

Purpose of problem: Problem to ask the basic understanding of molecular orbital method.


1) 水分子の分子軌道($\varphi_1 \sim \varphi_7$)のうち,最高被占軌道(HOMO)と最低空軌道(LUMO)に対応する軌道を答えよ。(Answer the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the molecular orbitals ($\varphi_1 - \varphi_7$) of water molecule.)

HOMO (φ_5) LUMO (φ_6)

2) Koopmans の定理によると、イオン化ポテンシャル(IP)は HOMO のエネルギーの逆符号、IP = モ(HOMO) で表される。水分子の IP(eV)を計算せよ。なお、1 Hartree = 27.21 eV とする。(According to the Koopmans' theorem, ionization potential (IP) is defined by the reverse sign of energy of HOMO, IP = モ(HOMO). Calculate the IP(eV) of water molecule. Use 1 Hartree = 27.21 eV, if needed.)

10.68 eV

3) 描画ソフトにより可視化した各分子軌道を下に示す。対応する分子軌道($\varphi_1 \sim \varphi_7$)を答えよ。なお、分子軌道近くの+、一は位相の違いを表す。 (Each molecular orbital visualized by a drawing software is given below. Answer the corresponding molecular orbitals ($\varphi_1 - \varphi_7$). The + and – signs near molecular orbitals indicate the difference in phase.)

4) 水分子は C_{2v} 群に分類される。指標表(表 3)に従い,以下の分子軌道の対称性を答えよ。(Water molecule is categorized as C_{2v} group. Answer the symmetry of following molecular orbitals based on the character table (Table 3).)

φ_2 (a_1)	φ_3 (<i>b</i> ₂)	φ_4 (a_1)	φ_5 (b_1)
---------------	---------	---------------	-------------------------	---------------------	---	---------------------	---

表 3 C_{2v}の指標表 (Table 3 Character table of C_{2v})

C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_v(yz)$
A_1	1	1	1	1
A_2	1	1	1	-1
B_1	1	-1	1	1
B_2	1	1	1	1

広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

問題3 (Problem 3) 問題用紙は3 枚あります (Three sheets for Problem 3)

基本結晶構造の知識を問う問題。Questions testing knowledge of basic crystal structures.

- 1. 図 1 は ZnS の多形で六方晶をとる結晶構造を示している。格子定数は、a=0.382 nm, c=0.626 nm である。次の間に答えよ。(Figure 1 shows the crystal structure of a hexagonal polymorph of zinc sulfide ZnS. The lattice constants are a=0.382 nm, c=0.626 nm. Answer the questions below.)
- 1) S 原子の配置はある最密充填構造に関連付けられる。その構造の名前を答えよ。(The lattice of S atom is correlated with a close packing structure. Answer the name of the close packing structure.)

六方最密充填構造 hexagonal close packing

2) この結晶構造の名称を答えよ。(Answer the name of crystal structure of this polymorph of ZnS.)

ウルツ鉱構造 wurtzite structure

3) この結晶構造では S^2 -が作る四面体孔を Zn^2 +が占めている。 すべて の四面体孔のうち Zn^2 +が占有している割合を答えよ。 $(Zn^2$ + occupy tetrahedral holes formed by S^2 -. Answer the ratio of tetrahedral holes which are occupied by Zn^2 +.)

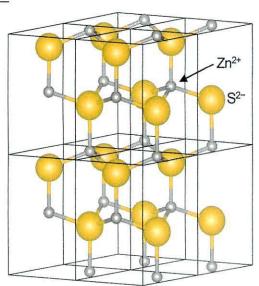


図 1. ZnS の一つの多形の結晶構造 (Figure 1. Crystal structure of a polymorph of ZnS.)

4) この ZnS 結晶の密度を計算せよ。 Zn, S のモル質量はそれぞれ 65.4, 32.1 g mol⁻¹ とする。 (Calculate the density of this ZnS crystal. Molar masses of Zn and S are 65.4 and 32.1 g mol⁻¹, respectively.)

4.09 g cm⁻³

5) CuKa (波長 $0.154\,\mathrm{nm}$) を用いてこの ZnS 結晶の粉末 X 線回折を測定するとき,指数 002 および 110 の回折のブラッグ角 θ を計算せよ。 (When X-ray powder diffraction pattern of the ZnS crystal is measured by using CuKa radiation (wavelength $0.154\,\mathrm{nm}$), calculate the Bragg angles θ for the reflections with indices 002 and 110.)

002 12017, θ =14.2 deg 110 12017, θ =23.8 deg . For 002, θ =14.2 deg. For 110, θ =23.8 deg.

無機物を含む試料の分析に関する基礎知識を問う問題。

Questions testing basic knowledge about analysis of samples containing inorganic moieties.

2. 有機成分と吸着水を含む非晶質金属酸化物ゲル試料を熱重量示差熱分析装置(TG-DTA)で分析したところ,重量減少を伴う吸熱現象,重量減少を伴う発熱現象,重量変化を伴わない発熱現象が観測された。これら3つの現象の考え得る解釈を述べよ。ただし,測定雰囲気の流通ガスとして乾燥空気を用いたとする。(When an amorphous metal oxide gel sample containing organic moieties and adsorbed water was measured with thermogravimetry-differential thermal analysis (TG-DTA), an endothermic event with a mass decrease, an exothermic event with a mass decrease, and an exothermic event without mass change were observed. Describe possible interpretations for these three events. Assume that dry air was used as the flow gas.)

重量減少を伴う吸熱現象:吸着水の脱離,重量減少を伴う発熱現象:有機成分の燃焼, 重量変化を伴わない発熱現象:非晶質成分の結晶化,と解釈できる。

Possible interpretations are as follows:

the endothermic event with a mass decrease: desorption of water molecules, the exothermic event with a mass decrease: combustion of organic moieties, and the exothermic event without mass change: crystallization of amorphous moieties.

2025年10月, 2026年4月入学 (October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題

Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

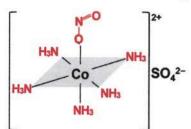
Entrance Examination Booklet (General Selection)

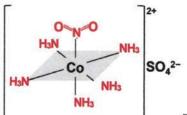
(2025 在 8 日 28 日 宝施 / August 28 2025)

試験科目 Subject	応用化学(専門科目Ⅱ) Applied Chemistry II	プログラム Program	応用化学 (Applied Chemistry) スマートイノベーション (Smart Innovation)	受験番号 Examinee's Number	M
-----------------	-------------------------------------	------------------	---	---------------------------	---

問題3 (Problem 3) 続き (Continued)

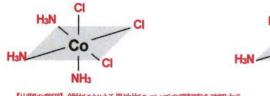
3. K2MnO4 と KMnO4 はそれぞれ暗緑色と深紫色の水に易溶な固体である。K2MnO4 を水に溶かすと緑色の溶液となる。 この溶液に酸を加えるとどのような現象が起こるかを推測せよ。ただし、標準還元電位を E° として、 solids that are easily soluble in water, and dark green and deep purple, respectively. When K2MnO4 is dissolved in water, it forms a green solution. Predict what phenomena will occur when an acid is added to this solution. $MnO_4^- + e^- \rightarrow MnO_4^{2-}$: $E^0 = +0.56 \text{ V}$, $MnO_4^{2-} + 4H^+ + 2e^- \rightarrow MnO_2 + 2H_2O : E^0 = +2.26 \text{ V}$, where E^0 is standard reduction potential.)


 $MnO_i^++\epsilon^- o MnO_i^-$ を①、 $MnO_i^-+4H^++2\epsilon^- o MnO_i+2H_O$ を②とすると、標準優元間位 E^- が正に大きい②式では反応が右に進み、 E^- が正に大きい①式では反応が左に進み不均化する。 具体的には、水溶液中の MnO_i^- のうち、一部は MnO_i に選売されて固体が沈殿し、残りは MnO_i に酸化され、溶液の色が赤紫色に変わる。 (If " $MnO_i^-+\epsilon^- o MnO_i^-$ " is designated as reaction (1) and " $MnO_i^-+4H^++2\epsilon^- o MnO_i^-$ " is designated as reaction (2), where the standard reduction potential E^- is significantly positive, the reaction proceeds to the right. In contrast, in reaction (1), where E is slightly positive, the reaction proceeds to the left and undergoes disproportionation. Specifically, in the aqueous solution, some of the MnO is reduced to MnO₄, causing the color of the solution to change to reddish-purple.)


【出題の意図】標準最元電位の値をもとに、酸化還元反応の進行を推測することについての理解度を確認する。

Intention of problem It is intended to check the understanding of predicting the progression of redox reactions based on the values of standard reduction potentials.

- 4. 次のa), b)の名称の錯体はいずれも八面体六配位構造である。それぞれがとりうる2つの異性体の立体構造を図示し、 異性体の種類を①~⑥から選べ。(The complexes named in a) and b) both have an octahedral six-coordination structure. Illustrate the stereostructures of the two isomers for each and select the type of isomer from 1-6.)
- ① イオン化異性体 (ionization isomer) ② 幾何異性体 (geometrical isomer) ③ 配位異性体 (coordination isomer)


- ④ 結合異性体 (linkage isomer)
- ⑤ 鏡像異性体 (enantiomer)
- ⑥ 水和異性体 (hydration isomer)
- a) ペンタアンミンニトリトコバルト(III) 硫酸塩 (pentaamminenitritocobalt (III) sulfate)

異性体の種類 (type of isomer):

b)トリアンミントリクロリドコバルト(III) (triamminetrichloridocobalt (III))

【出題の意図】錯体における異性体についての理解度を確認する。

[Intention of problem] It is intended to check the understanding of isomers in coordination complexes.

異性体の種類 (type of isomer):

5. アルカリ金属である Li と K のそれぞれを酸素存在下 (ただし乾燥条件) で燃焼させると片方は酸化物 (M2O) を生成 しやすく、もう片方は超酸化物 (MO2) を生成しやすい。超酸化物を生成しやすいのは Li と K のいずれであるかを答え よ。また、そのアルカリ金属が酸化物より超酸化物を生成しやすい理由を説明せよ。(When alkali metals, Li and K, burn in the presence of O_2 under dry conditions, one forms a metal oxide (M_2O) and the other forms a metal superoxide (MO_2) . Answer which alkali metal, Li or K, preferably forms a superoxide. In addition, explain the reason why that alkali metal is more likely to form a superoxide than an oxide.)

Kが超酸化物であるKO₂を生成しやすい。アルカリ金属単体と酸素の反応で酸化物、過酸化物、超酸化物のいずれが生成しやすいかはイオン化に必要なエネルギーと結晶格子を作って安定化 するエネルギーをトータルしたとき,よりエネルギーの利得が大きいほうである。 Os分子から各イオンとなるのに必要なエネルギーはO*>O*>Osの順である。 大きなカチオンである Kケが O と結晶を生成する場合、イオン間距離が遠くなり、結晶格子形成による安定化のエネルギーの利得は大きくない。これはO2分子のOとOの結合を解離させてOを生成するのに必要なエ ネルギーを十分には補償できない。よってKはKOzを生成しやすい。

(K readily forms the superoxide KO₂. When considering the reaction of alkali metals with oxygen, the ease of forming oxides, peroxides, or superoxides depends on the total energy required for ionization and the energy gained from stabilizing the crystal lattice. The energy required for each ion to form from O₂ molecules follows the order: O² > O₂ > O₂ . When the large cation K* forms a crystal with O², the interionic distance increases, and the energy gain from lattice formation is not substantial. This does not sufficiently compensate for the energy needed to dissociate the bond between the O atoms in the O₂ molecule to produce O². Therefore, K readily

【出題の意図】アルカリ金属において、超酸化物の生成しやすさをエネルギーに基づいて説明できるかを確認する。 [Intention of problem] It is intended to check whether the ease of superoxide formation in alkali metals can be explained based on energy,

2025年10月,2026年4月入学(October 2025 and April 2026 Admissions) 広島大学大学院先進理工系科学研究科博士課程前期(一般選抜)専門科目入学試験問題 Graduate School of Advanced Science and Engineering (Master's Course), Hiroshima University

Entrance Examination Booklet (General Selection)

(2025年8月28日実施 / August 28, 2025)

			(20	23 071 20 170/10	7 Tragase 20, 20207
試験科目	応用化学(専門科目II)	プログラム	応用化学	受験番号	
Subject	Applied Chemistry II	Program	(Applied Chemistry) スマートイノベーション	Examinee's Number	M
			(Smart Innovation)		

問題3 (Problem 3) 続き (Continued)

6. ある化合物 HA は、酸型(HA)と塩基型(A-)で異なる紫外可視吸収スペクトルを示す。以下の問いに答えよ。(A compound HA exhibits different ultraviolet-visible absorption spectra between its acidic form (HA) and basic form (A-). Answer the following questions.)

1) 酸型 HA は波長 507 nm に単一の吸収ピークを示し、吸光度 A は濃度 C に応じて表の値を示した。このデータから、最小二乗法により検量線 $A=a\times C+b$ の係数 a,b を求めよ。計算には下記の参考式を用いてよい。(The acidic form HA shows a single absorption peak at wavelength of 507 nm, and its absorbance A varies with concentration C as shown in the table. Based on these data, determine the coefficients a and b of the calibration curve $A=a\times C+b$ by the least-squares method. Use the reference equations below, if needed.)

edea.)	
濃度	吸光度
(concentration)	(absorbance)
/ μmol dm ⁻³	
2.00	0.100
4.00	0.189
6.00	0.279
10.0	0.461

参考 (reference) $(x_i, y_i) \ (i = 1, 2, ..., n)$ から回帰直線を算出する際の計算式 (the formulas to calculate the linear regression line from data points $(x_i, y_i) \ (i = 1, 2, ..., n)$) $a = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2} \qquad b = \frac{\sum y - a \sum x}{n}$

a = 0.0452, b = 0.00887

2) 未知試料の吸光度が 0.290 であったとき, 1) で求めた検量線を用いて濃度を求めよ。(When the absorbance of an unknown sample was measured to be 0.290, calculate its concentration using the calibration curve obtained in 1).)

6.22 µmol dm⁻³

3)pH を変化させて測定すると吸収スペクトルが変化したが、波長 470 nm における吸光度は一定であった。この波長は何と呼ばれるか。また、これが観測されたことは系において何を意味するかを化学種の平衡の観点から説明せよ。(The absorption spectra measured at different pH values showed no change in absorbance at wavelength of 470 nm. What is this wavelength called? Explain what the observation of this feature implies in terms of chemical equilibrium in the system.)

等吸収点。酸型と塩基型の間で一次の平衡反応が成り立っている。(Isosbestic point: A first-order equilibrium exists between the acidic and basic forms.)

4) この化合物の波長 420 nm における吸光度は、十分に低い pH で 0.0382、十分に高い pH で 0.203 を示した。中間的な pH 3.50 では吸光度は 0.138 となり、このとき酸型と塩基型が共存している。これらの値から、この化合物の酸解離指数 p K_a を求めよ。なお、化合物の濃度は 10.0 μ mol dm $^{-3}$ 、光路長は 1.00 cm である。(The absorbance of the compound at wavelength of 420 nm was 0.0382 at enough low pH and 0.203 at enough high pH. At intermediate pH 3.50, the absorbance was 0.138, indicating the coexistence of the acidic and basic forms. Based on these values, determine the acid dissociation exponent p K_a of the compound. The concentration is constant at 10.0 μ mol dm $^{-3}$, and the light path length is 1.00 cm.)

3.32

出題意図 (Purpose of the questions)

化学平衡と分光測定に関する分析化学の基礎知識を問う
(To assess basic understanding of analytical chemistry related to chemical equilibrium and spectroscopic measurements.)