

数理情報科学プログラム

) 内はセメスター

までも足したり引いたりしていくと たところ、無限級数が関係している れることが不思議で、先生に質問し 最終的にはよく知った超越数で表さ

私も、 今でも繰り広げられているのです。 やって攻め込むか?」「いったいどこ す。「誰もが落とせなかった城にどう 級数は世界の数学者を悩ませていま の少しでもいいからこの目で見てみ に道があるのか?」と、熱い戦いが 無限級数の不思議な姿をほん 明るみに出したい、そう思っ

研究までの道のりを教えてください!

くことを知りました。有理数をどこ

てくれた先生のおかげです。 のは、この宿題と、丁寧に付き合っ ように思います。数を好きになった てくれました。最高は8重丸だった はすべてのページに丁寧に丸を付け と書き続けたのです。そして、先生 ひたすら「2 4 18 楽しくなった私は、5冊のノートに ていたのですが、書いているうちに それをどのくらい書くのかは任され 偶数を、ノートにできるだけたくさ ん書こう」という宿題が出ました。 小学1年生の時、「2から20までの 20

> 研究室: C813 使っていくつかの計算を試してみた のですが、その一例が、研究内容の オフィスアワー: 17:00~18:00 (水・金) 担当授業: 線形代数学 I(1) 線形代数学Ⅱ(2) 積分学講義演習(2) ラフ的幾何学(3)

研究の中での総合科学を

総合科学部には、助手時代に9年

た。 関わる問題の難しさに惹かれ、大学 では整数論や岩澤理論を学びま

学んで納得しましたが、無限級数が です。これについては大学1年生で

教えてください!

歴の中で私が行っている「総合科学 再び戻ってきました。そういった経 度他の大学に勤めた後、昨年の春に 間お世話になりました。そして、一

いました)をもらいました。それを ソコン(当時はマイコンと呼ばれて

の値が「log2=0.693174……」に近づいてい

例えば「フェルマーの最終定理」もこういっ

た概念が拡大されて解かれた問題です

ところで、高校時代、 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}$

ています。これが私の研究テーマで

高校生になったら、いとこからパ

で、いくつかの古典的な難問が解かれました。

という整数の一種です。これらを考えること

が、「沙2」「1+√5」

- なども、「代数的整数」

という数はいわゆる「整数(自然数)」です

皆さんが普段目にする「1、2、3、4……」

専門は、「代数的整数論」という分野です。

高橋先生の研究内容を教えてください!

と教えてくれました。今もなお無限

項で触れた

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}$

《自慢の品》

高村光太郎から宮崎稔(光太郎の姪の 夫) に宛てた直筆の手紙、岩澤理論の創 始者岩澤健吉先生直筆のノート、レオン ハルト・オイラー著「王女への手紙」

岩澤先生は世界の数学者から尊敬されて いる先生で、この先生が出席されるセミ ナーに参加したときに書いていただきま した。また、「王女への手紙」は全く数式 を使わず、科学や哲学について書かれた 本です。オイラーをぜひ見習いた

味》 軟式野球

教職員リーグで、白熱した試合を楽しん でいます。詰将棋・言葉遊び・釣り・読 書なども。手を出したものは好きになる

《学生時代に燃えたこと》

サークル活動(言葉遊び研究会・地 質部・数理科学研究会など)

「言葉遊び研究会」では、回文あり、エッ セイありの冊子を発行していました。大 学祭のために「回文ビデオ」(回文を視覚 化したもの)を制作しました。

《生まれ変わるなら》

人間か知的生命体

生まれ変わっても、自分自身を見つめる ことができる存在でありたいと思います。

《座右の銘》

「この世界、相当に深いな……。」 「この世界」とは、学問分野であったり、

ませんし、実際、 難しいことに挑戦するのは楽しいですから 総合科学的な視点によってオイラーという人 常に広い視野で見ていたようなのです。今は まったく別の話だ」と考える人がほとんどで は大事ですが)、光学・音楽・天文学・哲学 はなく(もちろん数学をよく知っておくこと う人間を正しく捉えるためには、 います。これは簡単なことではありませんが しょうが、どうやら彼は学問というものを非 しく捉え切れていないと思っています。そし 宗教学などを知っておかないと十分ではあり どうしても必要になります。「数学と宗教学は て、正しく捉えるために、総合科学の視点が の本当の姿をあらわにすることを目指して 今の段階では私自身まだ正 数学だけで

> よく感じます。 な先人の手記を読むと、そのように 重要視するべきだと思います。偉大 らず、「総合性」ということをもっと 象を受けるんです。 科学」に取り組まれているという印 いることですから。総合科学部に限 で、高橋先生はすごく熱心に「総合 もちろん、それはいつも意識して

オススメの授業はなんですか?

です。 学は微積分と並んで理工系では必須 「線形代数学Ⅱ」です。線形代数 理工系の学問を学ぶための基

生の講義を受講しましたが、その中 私は今年度の前期・後期と続けて先 礎として、ぜひ受講してほしいと思

者であるオイラーの研究です。

オイラーとい

部らしいこと」と言えば、

18世紀最大の数学

それほど苦にはなりません

場する ができます。背景に広がる大きな世 ゆる可能性の中にもあるはずだ」と 出されるのみではなく、さらに音・ 界を知った上で学ぶとけっこう楽し らに、あらゆるところに見出すこと 般化したものが、線形代数学Ⅱで登 重量・時間・および位置その他あら いし、「この世界、 いう言葉があります。比例関数を一 「比例は単に数および量の中に見 「線形写像」にあたります。 レオナルドの言葉にあるよ

ださい。今期の授業の最初に話しま 領域の広さにも思いを馳せてみてく います。そして、背景に広がる学問 したが、レオナルド・ダ・ヴィンチ あると思います。

学生に一言お願いします!

……。」と思えることがきっと

思う瞬間を大切にし、そう思 から大学を卒業してください える分野を3~4つ見つけて の世界、相当に深いな……。」と 総合科学部の皆さんは、「こ

20 生 Щ 谷

[担当]

《行きつけのお店》 八本松のファミリ フタバ図書

色んな趣味の世界であったりします

研究室紹介

Sougoukagaku

東谷先生の研究内容を教えてください!

の結果、 その典型例が超伝導ですね 不思議でダイナミックな現象が起こります。 と思えます。しかし実際には、 つき、 ますが、 に隠れていた小さな相互作用が顔を出し、 ます。高温では原子や分子は激しく熱運動し らどういう性質を示すかについて研究してい 専門は低温物理学で、 その熱運動は止み、 一見何も面白いことは起きそうにない 我々が今まで見たことのないような 温度が低くなり絶対零度に近づく 物質が低温になった あらゆるものが凍り 熱運動の背後 そ

総合物理プログラム

研究室:C212 オフィスアワー: 14:00~16:00 (金) (在室時はいつでも可) 担当授業: 情報活用基礎(1) 物理学 I(1) 物理学実験(3) 量子力学 I(3) 物質科学実験法・同実験B(5) 物理科学英語演習(6) 量子力学演習 I(6) ※() 内はセメスター

そ、 まれます。 奇な物理が隠れているような気がし ことが起きます。壊れたところにこ にだけ存在する奇妙な量子状態が生 表面付近では超伝導状態が部分的に うな影響を受けるか、という問題に 不純物などの散乱体によってどのよ 私は、 れます。 、味をもっています。 そこには我々がまだ知らない新 新しく生まれるものがあるので 超伝導状態が物質の表面や 不純物の近くでも同様な また、 同時に、 超伝導物質の 表面付近

リウムは液体だから、 のですが、 る象の研究もしています。超流動 液体ヘリウムが低温で示す超流動 容器壁の付近にはやっぱ 容器に入れる

> ではありません ピュータを使いますが、 主な研究道具です。手で計算できな ました。 や超流動の理論的な研究を続けてき 学院のときです。それ以来、 り変な量子状態が現れます。 いところは、 低温物理学に興味をもったのは大 理論ですので、 仕方がないので、 あまり得意 紙と鉛筆が 超伝導 コン

のですが… ことなのかうまく理解できていない 理論を研究するというのがどういう

モデルに基づいた計算をします。 質かを捉え、それをモデル化して、 を仮定し、どうモデル化するかは、 論では、まずは、何がその現象の本 まあ、そうかもしれませんね。 何 理

> るうちに新しい発見をして、 仕事ですが、 んどの場合、 理論屋さんの腕の見せ所です。

研究までの道のりを教えてください!

どちらかというと数学の方が好き だったのですが、 論ですね。物理が好きになったのは 大学に入ってからかな。高校時代は きっかけは大学4年生のときの卒 数学の研究ってど

ばいいかを考えるのが理論屋さん がら物理学は発展し確立していくの す。こうしたキャッチボールをしな から実験を提案することもありま の現象を説明するためにはどうすれ 逆に、理論をやってい 実験が先にあって、 理論側 ほ

んなことをするのかがイメージできなかった ので、数学を生かせそうな物理学科に入学し ました。4年生になって理論物理の研究室に 入りました。このときの卒業研究が楽しく て、大学院で研究を続けたいと思うようにな りました。ああでもないこうでもないと悩み ながら問題を解決していく研究のプロセスが とても面白く感じたのです。大学院一年のと きに、超伝導の近接効果に関する論文を読ん でとても興味をもちました。それが今の研究 に繋がっています。

研究の中での総合科学を教えてください!

かどうかは別にして、疑問に思ったことを、と日常的に交流できます。研究に直接役立つと日常的に交流できます。研究に直接役立つ

それがどんな分野のことでも、気軽 に相談できる人が身近にいるのは総 合科学部のいいところだと思いま す。実際に、辞書では解決できな かった英語の疑問や馴染みのない難 解な数学などについて、その道の専 解な数学などについて、その道の専 門家に意見を伺ったことがあります が、そんなことが昼食の時やちょっ とした空き時間にできます。

オススメの授業は何ですか?

ます。物理の専門的な知識が必要 してきてくれるので、私も勉強にな とならないような題材を選んでいま ます。物理の専門的な知識が必要 ので、私も勉強にな

受講してくれるといいですね。すので、物理プログラム以外の人も

聞いてみたいことはありますか?広島大学の学生に

環境問題に興味がある学生さんは多いですよね。そういう人は物理にも興味があると思うのですが、しかし実際には物理からのアプローチをしま際には物理からのアプローチをしまではあると思うのですが、しからないですよ

学生に一言お願いします!

まう学生が多いような気がします。 い。最近は一人で全部抱え込んでし い。

しいですね。
しいですね。
しいですね。

【担当】19生 中村 洋平

自慢の品は何ですか?

Q

Q

座右の銘を教えてください

A・座右の銘というわけではありませんが、

「時は金なり」と常々思います。

A・特にありませんが、強いて挙げれば、学生時代か

Q 学生時代に燃えたことはなんですか?

A Q

趣味は何ですか?

・野球観戦(巨人ファンです、妻はアンチ

巨人です)、テニス、草野球

A・ビリヤード場に通っていました。 のよりでする。学生時代は毎日のよ

Q 生まれ変わったら…

A・かもめとか、鳥になりたいですね。 人間

研究室紹介

Sougoukagaku