農場における乳牛繁殖効率向上に向けた取り組み

フィールド科学系部門生物生産技術班 技術員 田中 明良

1. はじめに

本学附属農場では教育・研究の目的で乳牛を飼育している.正確な実験データの取得や、幅広い実習を行うため、乳牛が多頭数必要とされる.また、乳牛による生産物の収入に応じて、農場に予算配分がされるため生産性も重要である.乳牛は妊娠・分娩し、子牛を獲得しなければ、乳を生産できない.よって繁殖は非常に重要である.繁殖に用いる人工授精の成功率(受胎率)を高めるためには、発情徴候の発見と、発情の中でも最も受胎率の高い時期の見極めがカギとなる.しかし、現在、本農場に限らず、酪農現場で共通の繋殖に関する問題が多く存在する.本稿では、現状とその解決に向けた取組について紹介する.

2. 乳牛のライフサイクルについて

個体差はあるが、乳牛は誕生して約14ヵ月で初めて人工授精を行う事ができる(人工授精については後程説明).人工授精後、受胎すれば約280日の妊娠期間を経て初めて出産する.出産すると乳が生産され2、3ヵ月で乳量ピークとなりその後徐々に減少する.出産後40~60日で再び人工授精を行い、妊娠と出産を繰り返し、一生終えるまでこのサイクルを3~4回続ける.サイクルが繰り返されるほど経済性が高くなる.繁殖ができなくなり、乳生産が終了すると食肉用として出荷する.そのため生産性を上げるには人工授精の成功が非常に重要になる(図1).

乳牛のライフサイクル

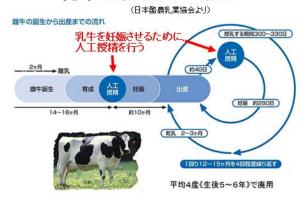
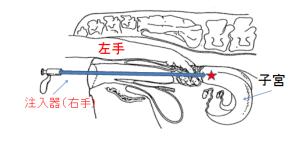



図1. 乳牛のライフサイクル

3. 人工授精について

人工授精の方法は、まず、ポリエチレン製の手袋をはめ直腸に手を入れ、直腸壁を介して子宮の手前にある頸管をつかむ。次に、もう一方の手で注入器を操り、図2の★の位置で精液を注入する。この人工授精技術により、優れた能力を持つ雌牛が生まれる精液を選定し、乳牛能力の改良を行うことが可能となる。また、人工授精が可能になるのは乳牛の発情徴候が見られた時であり、妊娠していない場合21日周期で現れる。高い受胎率を得るには、発情期の中でも人工授精を行う時期を見極める必要がある。

家畜人口授精講習会テキスト 旧版、1989

図 2. 人工授精方法

(1) 発情の確認方法

発情の確認方法は以下のとおりである.まず、 牛を直に見て行動の変化と陰部の状態を観察す る. そこで発情が疑われると, 子宮頸管外口の目 視・直腸検査をして発情かどうか判断していく.

外部徴候として,他の牛に乗ったり乗られたり する乗駕行動(図3)や吠える,落ち着きがなく 歩き回るなどの行動変化が現れる. さらに、食欲 や乳量の減少・陰部の充血や透明な粘液の流出な どが見られる.

図 3. 外部徴候 乗駕行動

外部徴候が確認できると発情かどうか, より正 確な判断をするため,内部徴候の確認として直腸 検査を行う(図4). 直腸検査は人工授精と同様に 直腸に手を入れ直腸壁を介して卵巣・子宮頸管な どの内部生殖器を触診し状態を把握していく.

図 4. 直腸検査による内部徴候の確認

まず、子宮頸管の触知を行う. 直腸に手を入れ るとすぐに膣に当たり、奥に移動していくと子宮 頸管にたどり着く. この時, 子宮頸管を触診して 太く緩んでいれば、精子を受け入れる状態になっ ているということで,発情の可能性が高く,細く 硬い様であれば発情の可能性が低いと判断でき る (図5).

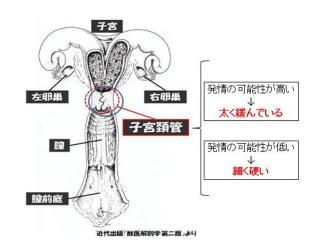


図 5. 子宮頸管における発情確認方法 1

次に、子宮頸管の奥の子宮が触知できる. 牛の 子宮は双角子宮なので管腔が左右に分かれてお り,この時,発情していると精子移送のため収縮 運動が強くおこる(図6).この収縮運動の強さで 発情の強弱が判断できるので注意深く触診する.

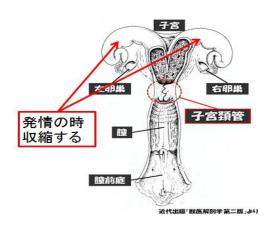


図 6. 子宮における発情確認方法 2

最後に,卵管を介して卵巣の触知を行う(図7). 卵巣では性周期により卵胞か黄体, またはその両 方が触知できる. 発情期であれば卵胞が卵巣で触 知できる(図8). 卵胞の内部は卵胞液で満たされ ており、水を入れた風船を触っている感触がある. 発情の初期は膜が厚く感じられるが発情のピー クには膜が薄く今にも破れそうに感じる. 発情で はない黄体期には黄体が卵巣で触知できる(図9). 卵胞とは違い水を含んだ感触ではなく, 硬く感じ られる. 以上のことを踏まえ発情かどうかを判断 していくが、触診で卵胞と黄体を区別するのは難 しい場合もあり、技術と経験が必要である.

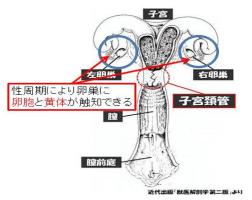


図7. 卵巣における発情確認方法3

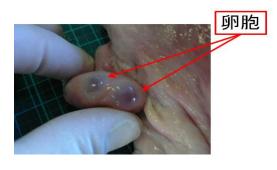


図8. 卵胞の写真

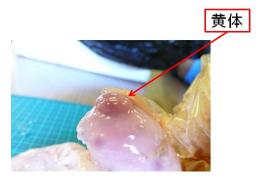


図9. 黄体の写真

(2) 人工授精のタイミング

発情持続は約24時間で,発情終了後約12時間 後に排卵が起こると言われている. 受胎させるに は排卵した卵子と、注入後授精能を獲得した精子 とが適切なタイミングで出会うことが必要であ る. このタイミングを適切にするため、農場では 朝に発情が確認できたら夕方に, 夕方確認できた ら、翌日の朝に人工授精を行う(図10).

人工授精のタイミング

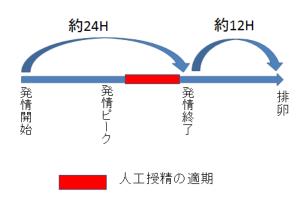


図 10. 人工授精のタイミング

4. 当農場における繁殖の問題点

近年, 家畜改良が進み乳牛の個体能力は向上し てきており、1年間で生産される乳の量が9000 kgを超える牛が多くなってきている. 特に泌乳初 期の乳量に, 飼料摂取量が追いつかず, 負のエネ ルギーバランスになり、体に蓄積されたエネルギ 一が乳生産に動員されるため, 生殖器の回復が遅 れてきている. また, 夏場は暑熱ストレスにより 発情徴候が不明瞭で,人工授精まで至ることがで きないのが現状である. 特に夏場の受胎率低下が, 本農場では顕著に認められる(図11).

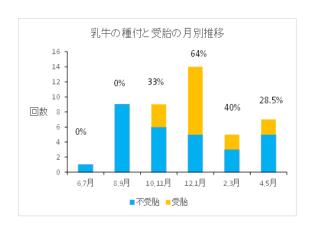


図 11. 乳牛の種付けと受胎の月別推移

5. 現在の受胎率向上の取り組み

本農場で行っている受胎率向上に向けた取り 組みとして, まず, 泌乳初期の乳量ピークを抑え ることで, 生殖器を早期回復することができると 考え、 泌乳初期のピークを抑える様な特徴を持っ た系統の導入を行っている. 次に暑熱ストレスに 対しては, 扇風機・細霧装置を活用して牛舎内の 温度上昇を抑制している.しかし、それでも発情 が見られない場合は分娩後の子宮および卵巣の 回復を確認し、その遅れを確認した場合にはホル モン剤を使用し発情を誘致させている. また, 子 宮内膜炎等が疑われる場合には子宮洗浄を行い 早期の子宮回復に努めている.

6. 今後の受胎率向上の取り組み

今後の取り組みとしては夏場における受胎率 向上のために受精卵移植の活用を考えている. 受 精卵は受精後7日間暑熱ストレスを受けて死滅 することがあると考えられており、授精後7日を 経過した受精卵の移植により受胎率の向上が可 能である.しかしながら,受精卵移植は通常の人 工授精よりも高度な技術が要求されるので, さら なる技術の向上を行っていきたい. また, 現在使 用している牛舎は古く熱がこもりやすくなって おり、暑さに弱い乳牛は暑熱ストレス受けやすい ため, 乳牛が快適に過ごせる環境作りに取り組ん でいきたい.

参考文献

乳のはなし 家畜人工授精テキスト旧版.1989年 獣医解剖学第二版.1989年9月 監修

日本酪農乳牛協会 社団法人日本家畜人工授精協会

K. M. Dyce, W. O. Sack and C. J. G. Wensing/ 著(近 代出版)