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Fig. 1 Phagocyte NADPH Oxidase
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Fig. 2 Effect of SDS on the NADPH oxidase
activity of calyculin A-treated neutrophils.
Neutrophils were incubated with 0.1 puM calyculin A
or DMSO at 37°C for 5 min. A, Production of O,
was monitored with or without the addition of 50 uM
SDS. B, The cells were further incubated with or
without 50 uM SDS for 10 min.  The cells were
then disrupted and the membrane preparations
therefrom were analyzed for NADPH oxidase
activity.  C, The cells were further incubated for 10
min with or without the addition of various
concentrations of SDS.  Production of O, during
the incubation was measured.
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Fig. 3 Effect of AA on the NADPH oxidase
activity of calyculin A-treated neutrophils.
Neutrophils were incubated with 0.1 uM calyculin
A or DMSO at 37°C for 5 min. A, The cells
were further incubated for 10 min with or without
the addition of various concentrations of AA.
Production of O, during the incubation was
measured. B, The cells were further incubated
with or without 2.5 uM AA for 10 min.  The
cells were then disrupted and the membrane
preparations therefrom were analyzed for NADPH
oxidase activity.
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Fig. 4 Effects of SDS and calyculin A on the
translocation of each component of NADPH
oxidase.

A, *P-labeled neutrophils were treated with 0.1
UM calyculin A or DMSO at 37°C for 5 min, and
then for 10 min with or without the addition of 50
UM SDS. The lysate of the cells was mixed with
the anti-mouse p47°" antibody. The proteins
in the immune complex were separated by
SDS-PAGE and analyzed for the radioactivity.
B, C, D, Neutrophils were incubated with 0.1 uM
calyculin A or DMSO at 37°C for 5 min, and then
for 10 min with or without the addition of 50 pM
SDS. The cells were disrupted to prepare the
membrane fraction.  The peptides in the fraction
were subjected to SDS-PAGE, transferred to
PVDF membranes, and analyzed with antibodies
against p47°"* (B), Rac (C), or p67°" (D).
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Fig. 5 Inhibitory effect of LY294002 on the
SDS-induced activation of Rac.

Neutrophils were treated in the presence or
absence of 0.1 uM calyculin A with or without 100
UM LY294002 at 37°C for 5 min.  The cells
were further incubated for 10 min with or without
the addition of 50 uM SDS. A, The cell lysate
was incubated with PAK2-RBD-bound beads for
10 min. Proteins bound to the beads were
solubilized, subjected to SDS-PAGE, transferred
to PVDF membrane, and analyzed with the
antibody against Rac. B, The cell lysate of was
subjected to Western blotting analysis with
anti-Rac.  C, The membrane fraction from the
cells was subjected to the Western blotting
analysis with anti-Rac.
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Fig. 6 Effect of Ptdins 3,45-P; on the

superoxide production of wortmannin-treated
neutrophils.

A, Neutrophils were incubated with 0.1 pM
calyculin A in the presence of 100 uM LY294002,
1 uM wortmannin or DMSO (control) at 37°C for
5 min. After the addition of 50 uM SDS,
production of O, during a 10-min incubation was
measured. B, Neutrophils were incubated with
0.1 pM calyculin A and 0.5 pM wortmannin at
37°C for 7 min. At time O in the figure, 5 uM
PtdIns (3,4,5) P; or empty carrier (10 uM histone)
was added.  The cells were then incubated for 3
min before the addition of 50 uM SDS or H,0O
(control).

B 7 =4 L PI(3,4,5)PsD — DDy 7
SOl ZZ T 5 LRl Sz (Fig. 8).
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Fig. 7 Effect of SDS on the in vitro

translocation of Rac and p47°"™ to the plasma
membrane.

A, B, The membrane and the cytosol fractions
from neutrophils were mixed and incubated at
25°C for 3 min with various concentrations of
SDS.  The membrane fraction was collected and
analyzed by anti-Rac (A) or anti-p47°" (B).
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Fig. 8 Recruitment of adaptor proteins to NADPH oxidase system.
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