【本件リリース先】

文部科学記者会、科学記者会、 広島大学関係報道機関

NEWS RELEASE

平成29年6月15日

本件の報道解禁につきましては、平成 29 年 6 月 17 日(土)午前 0 時以降にお願いい たします。

> ウイルスに対する反応性が高いT細胞は 「共有T細胞レセプター」を利用していることを解明しました ~有効性の高い細胞免疫療法の開発に大きな期待~

【本研究成果のポイント】

- ウイルス抗原に対して高い免疫応答性を示す T 細胞は、個人間で共有されている T 細胞レセプター(「共有 TCR」)を利用していることを解明しました。
- 「共有 TCR」は、長期免疫記憶を担う「幹細胞様メモリーT 細胞」において特に 高い頻度で利用されていることを明らかにしました。
- この結果は、多数の T 細胞の中から特に強い免疫応答力を持つものを選び出す手掛かりとなり、感染症やがんに対する細胞免疫療法の臨床開発に貢献することが期待されます。

【概要】

広島大学原爆放射線医科学研究所の川瀬孝和助教、美山貴彦大学院生、一戸辰夫教授らの研究グループは、ウイルスに対して高い免疫応答性を示す CD8 陽性 T 細胞は(注1)、ウイルスを認識するために、異なった個人の間で共有されている T 細胞レセプター(共有 TCR)(注2)を利用していることを解明しました。また、このような「共有 TCR」は、長期免疫記憶を担う「幹細胞様メモリーT 細胞」(注3)において特に高い頻度で利用されていることを明らかにしました。従来、異なった個人の間で、それぞれがもつ多数の TCR の共通性を比較することは困難でしたが、本研究は、国立病院機構相模原病院臨床研究センター、富山大学医学薬学研究部との共同研究により、次世代シーケンサー(注4)を用いて TCR遺伝子の配列を大量に取得するとともに、ウイルスを認識する TCR を単一細胞のレベルで決定し、「共有 TCR」を見出す新しい解析技術の開発によって実現しました。

今回の結果は、多数の T 細胞の中から特に強い免疫応答力を持つものを選び出す手掛かりとなり、感染症やがんに対する細胞免疫療法の臨床開発に大きく貢献することが期待されます。

この研究成果は、ロンドン時間の 2017 年 6 月 16 日午前 10 時(日本時間: 2017年 6 月 16 日午後 6 時)に、英国科学雑誌「Scientific Reports」オンライン版に掲載されます。

【発表論文】

論文タイトル:

Highly Functional T-cell receptor repertoires are abundant in stem memory T cells and highly shared among individuals

【DOI 番号】DOI: 10.1038/s41598-017-03855-x

著 者:

美山貴彦¹,川瀬孝和¹,北浦一孝²,樗木 錬¹,柴田真志¹,大島久美¹,浜名 洋³、岸 裕幸³、村口 篤³、葛島清隆⁴、佐治博夫⁵、新井 理⁶、鈴木隆二²、一戸辰夫¹

- 1. 広島大学原爆放射線医科学研究所 血液 腫瘍内科研究分野
- 2. 国立病院機構相模原病院臨床研究センター 臨床免疫学研究室
- 3. 富山大学医学薬学研究部 免疫学講座
- 4. 愛知県がん研究センター研究所 腫瘍免疫学部
- 5. 公益財団法人 HLA 研究所
- 6. ビッツ株式会社

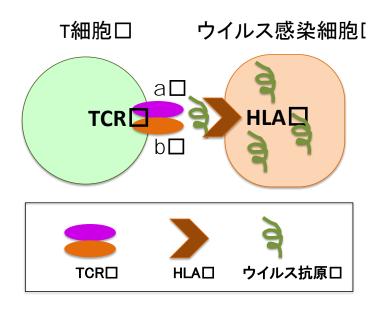
【背景】

T細胞(Tリンパ球)は、白血球の仲間で、病原体が感染した細胞やがん細胞を攻撃するために、それらの目印(抗原)を見つけるT細胞レセプター(T-cell receptor, TCR)と呼ばれる分子を、細胞1個あたり1種類発現しています。きわめて多様な抗原に対応するために、ヒトの体内のT細胞が利用しているTCR は数千万種類にも及ぶと推測されていますが、それらの中から、特定の抗原を効率良く認識するTCR がどのような規則にしたがって選ばれているかについては、まだ詳しいことがわかっていません。また、現在、特定の抗原を認識するTCR 遺伝子を新たに導入したT細胞を作成し、感染症やがんの治療に利用する研究が活発に進められていますが、その有効性を向上させるために、特に強い免疫応答力を持つTCR を選び出す技術の開発が待望されています。

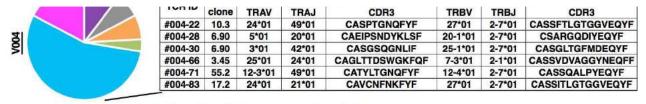
【研究成果の内容】

TCR は α と β と呼ばれる 2 つの部品(サブユニット)を使って、ウイルスやがん細胞の「目印」(抗原)を認識しています(図 1)。本研究では、まず健康な成人の血液に存在する CD8 陽性 T 細胞からサイトメガロウイルス(CMV)(注 5)を認識するものを分離し、まずそれらの T 細胞が利用している α サブユニットと β サブユニットの遺伝子配列を、次世代シーケンサーを用いてすべて同定しました。次いで、hTEC10(注 6)と呼ばれる技術により、ひとつひとつの細胞において、どの α と β の組み合わせが利用されているかを決定しました。その結果、CMV を認識する T 細胞が利用している TCR のほとんどは、数種類以内のごく限られた α と β のペアによって決定されていることが判明しました(図 2・図 3)。また、このようにして得られた α と β のペアを、TCR を欠損した細胞株に導入したところ、CMV 反応性 T 細胞の中で高頻度に利用されている TCR ほど、CMV 抗原に対して強い結合性を示すことを証明しました(図 4)。

さらに、健康な成人 5 名の血液中に存在する T 細胞の TCR をお互いに比較したところ、CMV 反応性 T 細胞の中で利用頻度が高い TCR は、CMV 感染歴の有無にかかわらず、複数の個人間で共有されていることがわかりました(図 5)。また、血液中の T 細胞のうち、このような「共有 TCR」をもつ細胞の比率は、個人毎に異なっていましたが(O.6-8.7%)、CD8 陽性 T 細胞を、いくつかの機能の異なるグループに分けて調べたところ、「幹細胞様メモリーT 細胞」と呼ばれる長期免疫記憶を担う細


胞において、特に「共有 TCR」が高頻度で利用されていることが判明しました(図 6)。

【今後の展開】


今回の研究と同様の方法を用いれば、特定のウイルスやがん細胞に対して特に強い免疫応答力をもつ TCR を多数同定することが可能となります。しかし、優れた免疫応答力がすべての「共有 TCR」に共通の性質であるのか、特定の「共有 TCR」に限られた性質であるのかについては、まだ不明であり、今後さらに検証を行っていく必要があります(図 7)。また、今後、同定された高機能 TCR の遺伝子を患者さんの T細胞に効率良く導入する技術を開発することが可能となれば、感染症やがんに対する有効性の高い細胞免疫療法の開発につながることが期待されます。

【参考資料】

図1. T細胞は TCR の α と β と呼ばれる 2 つのサブユニットをアンテナのように使用して、ウイルス感染細胞やがん細胞の目印となるさまざまな抗原を認識している。個人が有する TCR の α サブユニットと β サブユニットの構造はきわめて多様であり、特定のウイルスやがん細胞を認識できるのはごく一部の TCR だけと考えられている。なお、実際には、ウイルスやがん細胞の目印となる抗原は、ヒト白血球抗原(human leukocyte antigens, HLA)という分子の上に提示されており、TCR はウイルスやがんの目印と HLA を同時に認識している(「HLA 拘束性」)。

図 2. 健常成人の末梢血から分離された CMV 反応性 CD8 陽性 T 細胞が発現している TCR の種類と比率を示す。ドナーVOO1 では ID 番号#OO1-41 (緑色で示す) の TCR を 67.5% 使用しており、ドナーVOO4 では ID 番号#OO4-71 (水色) の TCR を 55.2%使用している。

n = 29, r = 6 n = number of T cell clones , <math>r = number of clonotypes

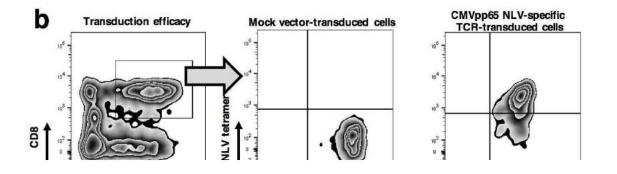
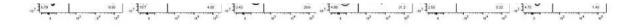



図3. CMV 感染歴をもたない健常者の T 細胞に図 2 で同定された TCR を遺伝子導入し、CMV 抗原結合能を確認した結果を示す。各解析図の上に示す 5 桁数字は TCR の ID 番号をあらわす。縦軸は CMV 抗原への結合性、横軸は導入した TCR の発現量に相当する。

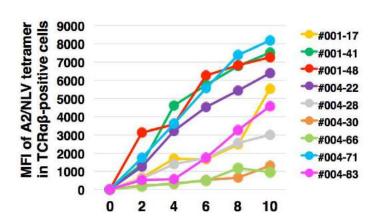


図 4. 同定された CMV 反応性 TCR の CMV 抗原に対する結合性を比較した結果を示す。縦軸は抗原を結合した T 細胞の量、横軸は抗原の濃度に相当する。右の 5 桁数字は図2で同定した TCR の ID 番号を示し、ドナー番号 VOO1・VOO4 でもっとも多く存在していた#OO1-41,#OO4-71 の結合性が他の TCR よりも高いことがわかる。

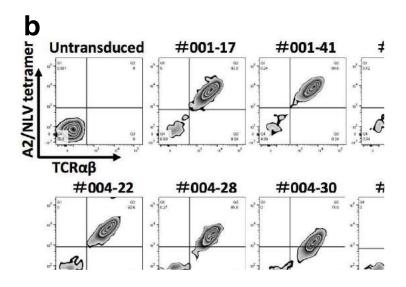


図5. ドナーVOO1, VOO4 の血液に存在する CMV 高反応性 TCR は「共有 TCR」であることを示す。それぞれのサークル(円)は1種類の TCR に対応しており、サークルが大きいほどその TCR を共有している人数が多いことを表す。縦軸は当該 TCR の存在頻度、横軸はその順位(左に行くほど上位)に相当する。VOO1, VOO4 のいずれにおいても存在頻度がもっとも高い TCR(各解析図の一番左のサークル)は、検討対象となった5名全員に共有されていた。

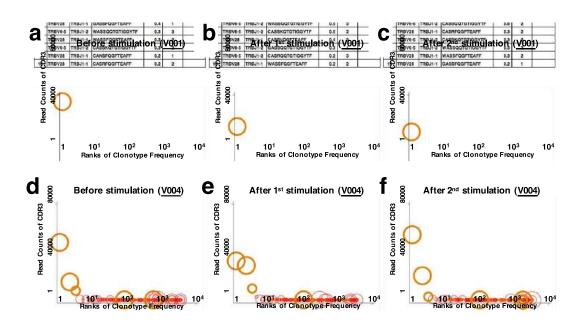


図 6. T細胞の機能別集団毎の「共有 TCR」の存在頻度を示す。それぞれのサークル(円)は1種類の TCR に対応しており、サークルが大きいほどその TCR を共有している人数が多いことを表す(最小のものは共有されていない TCR)。縦軸は当該 TCR の存在頻度、横軸はその順位(左に行くほど上位)に相当する。幹細胞様メモリーT細胞(SCM)では、上位にランクする TCR のほとんどが「共有 TCR」であることがわかる。(Naive, ナイーヴ T細胞; SCM, 幹細胞様メモリーT細胞; CM, セントラルメモリーT細胞; EM, エフェクターメモリーT細胞; EFF, エフェクターT細胞)

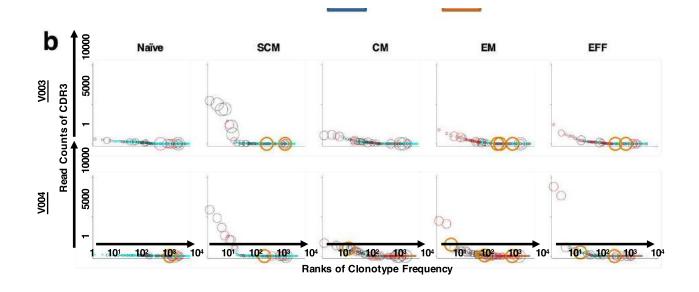
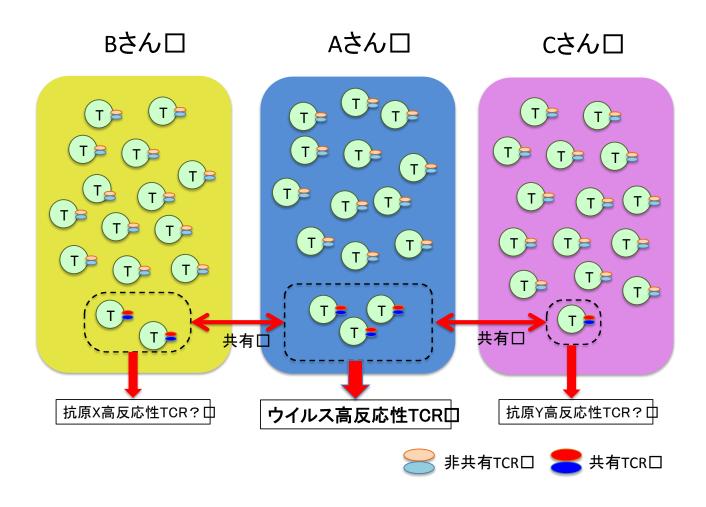



図7. 特定の個人(A さん)から見出されたウイルス抗原高反応性 TCRが、他の個人(B さんと C さん)からも見つかる「共有 TCR」であることを示す模式図。TCRが強く認識する抗原は標的細胞の HLA によっても規定されていることから、B さん、C さんが A さんと同じ HLA を持っていない場合には、B さん、C さんの「共有 TCR」が A さんと同じウイルスに対して高反応性を示すとは限らない。一方、B さんと C さんの「共有 TCR」は他の抗原 (抗原 X, 抗原 Y)に対して高反応性を示す可能性があることを仮説として示す。

【用語解説】

注1) CD8 陽性 T 細胞:

細胞の表面に CD8 と呼ばれるタンパク質を発現し、病原体に感染した細胞やがん細胞に対する細胞傷害機能をもつ T細胞(キラーT細胞)。

注2) T細胞レセプター(TCR):

T 細胞がさまざまな異物(抗原)を見分け、それらに結合するための細胞表面タンパク質。

注3) 幹細胞様メモリーT細胞:

組織幹細胞と同様に自己複製能が高く、長い寿命を持ち、他のメモリーT 細胞の供給源となる細胞。T 細胞には、機能的に異なるさまざまな亜集団があり、メモリーT 細胞は、一度遭遇した抗原に対する「免疫の記憶」を担う細胞。その中でも、幹細胞様メモリーT 細胞は免疫記憶の長期間の維持に関与していると考えられている。

注4) 次世代シーケンサー:

DNA や RNA の遺伝子配列を、高速で大量に解読する装置。

注5) サイトメガロウイルス(CMV):

ヘルペスウイルス科に属する DNA ウイルス。初感染を起こした後、終生体内に残存する。日本人成人における既感染率は、欧米と比して高く、ほとんどが乳幼児期に感染を受けていると考えられているが、近年、若年者層においては感染率が減少している。

注6) hTEC10:

<u>Human T-cell Receptor Efficient Cloning within 10 days の略称。T 細胞 1 個毎に α サブユニットと β サブユニットの遺伝子配列を短期間で決定することができる技術。(Kobayashi E, et al. Nat Med 2013;19:1542)</u>

【お問い合わせ先】

<研究に関すること>

広島大学原爆放射線医科学研究所 血液 • 腫瘍内科研究分野

教授 一戸 辰夫

Tel: 082-257-5861 FAX: 082-256-7108

E-mail: nohe@hiroshima-u.ac.jp

<報道に関すること>

広島大学 財務・総務室広報部 広報グループ

坂本 晃一

TEL: 082-424-6762 FAX: 082-424-6040

発信枚数: A4版 8枚(本票含む)