生物工学プログラム

秋 庸裕 教授 / AKI Tsunehiro Professor

有用油脂を生産する微生物のゲノム育種とその健康食品、化粧品、医薬品、化学品やバイオエネルギー供給への応用 展開をめざした研究を行っています。 

We are conducting research aimed at genome breeding of microorganisms that produce useful fats and oils and their application to the fields of health foods, health care materials, cosmetics, pharmaceuticals, chemicals, and bioenergy. 

keywords: biorefinery, biomass, carbon recycle, enzyme, lipid, microorganism 

  1. Improvement of fatty acid productivity of thraustochytrid, Aurantiochytrium sp. by genome editing. J. Biosci. Bioeng., 131, 373-380 (2021) 
  2. Metabolite profile analysis of Aurantiochytrium limacinum SR21 grown on acetate-based medium for lipid fermentation. J. Oleo Sci., 68, 541-549 (2019) 
  3. Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information. J. Oleo Sci., 67, 571-578 (2018)
荒川 賢治 教授 / ARAKAWA Kenji Professor

放線菌は、多くの有用な抗生物質(二次代謝産物)を生産する。生化学・有機化学・分子生物学を駆使して、抗生物質の 生合成遺伝子群を解析・操作し、新規抗生物質の創製や生産制御機構の解明などを目指している。

Actinobacteria produces a wide variety of valuable secondary metabolites including antibiotics. Our group focuses on creation of novel bioactive compounds through genetic engineering of their biosynthetic and regulatory genes, using biochemistry, organic chemistry, and molecular biology. 

keywords: biosynthesis, regulatory gene, secondary metabolite, antibiotic, actinobacteria 

  1. Functional analysis of P450 monooxygenase SrrO in the biosynthesis of butenolide-type signaling molecules in Streptomyces rochei. Biomolecules, 10, 1237 (2020). 
  2. SrrB, a pseudo-receptor protein, acts as a negative regulator for lankacidin and lankamycin production in Streptomyces rochei. Front. Microbiol., 11, 1089 (2020). 
  3. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci. Rep., 9, 10973 (2019)
岡村 好子 教授 / OKAMURA Yoshiko Professor

海洋細菌の多様性と高機能性に注目し、その有用遺伝子利用のための画期的な遺伝子検出技術・遺伝子合成技術を 開発した。また、生物機能を利用して、廃棄物から金属結晶合成バイオプラスチック原料生産も行っている。

We have focused on the diversity and high functionality of marine bacteria, and developed innovative gene detection and gene synthesis technologies in order to utilize their useful genes. In addition, we have studied on metal mineralization, production of biopolymers and chemical building blocks using wastewater and biomass through bioconversion process. 

keywords:marine bacteria, RHa-RCA, gene synthesis technology, metal mineralization, biopolymers, chemical building blocks 

  1. Characterization of biogenic lead sulfide quantum dots. Int. J. Mol. Sci. 24: 14149 (2023) 
  2. Screening of neutrophil activating factors from a metagenome library of sponge-associated bacteria. Mar. Drugs 19: 427 (2021) 
  3. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci. Rep. 10: 9588 (2020)
加藤 純一 教授 / KATOU Junichi Professor

微生物の優れた生物機能を活用して汚染環境の浄化や、農薬・肥料をなるべく使用しない環境適合型農業の確立を図 る環境バイオテクノロジーの研究を行っている。今注目している生物機能は微生物の物質認識機構である。 

I am interested in superior biofunctions and their application to environmental biotechnology and bioproduction of value-added chemicals. I am paying special attention to molecular recognition mechanism of environmental bacteria and its application to establishment of sustainable agriculture. 

keywords: environmental biotechnology, applied microbiology, microbe-plant interaction, bioproduction 

  1. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium Pseudomonas protegens CHA0 and enhancement of amino acid chemotaxis by MCP genes overexpression. Biosci. Biotechnol. Biochem. 84:1948-1957 (2020). 
  2. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29. Sci. Rep. 7:8609 (2017). 
  3. Identification of the mcpA and mcpM Genes, Encoding Methyl-Accepting Proteins Involved in Amino Acid and l-Malate Chemotaxis, and Involvement of McpM-Mediated Chemotaxis in Plant Infection by Ralstonia pseudosolanacearum(Formerly Ralstonia solanacearum Phylotypes I and III). Appl. Environ. Microbiol. 81:7420-7430 (2015).
河本 正次 教授 / KAWAMOTO Seiji Professor

健康と医療のバイオテクノロジーアレルギー発症機構解明と創薬分子標的探索/食と免疫による加齢難病制御 

My lab focuses on healthcare biotechnology. Ongoing projects are: 1) Immune regulation of age-related disorders, 2) Development of diagnostics and immunotherapeutics for allergy, and 3) Prevention of proinflammatory disorders by food factors. 

keywords: allergy, food factors, healthcare biotechnology, immunology 

  1. Influences of maternal factors over offspring allergies and the application for food allergy. Front. Immunol. 10, 1933 (2019) 
  2. Der f 35: an MD-2-like house dust mite allergen that cross-reacts with Der f 2 and Pso o 2. Allergy 72, 1728 (2017) 
  3. Der f 34, a novel major house dust mite allergen belonging to a highly conserved Rid/YjgF/YER057c/UK114 family of imine deaminases. J. Biol. Chem. 291, 21607 (2016
黒田 章夫 教授 / KURODA Akio Professor

無機固体や有機固体など様々な界面と結合するペプチドを選択し、応用すること。具体的にはアスベスト検査エクソソームの単離半導体バイオセンサーへ展開している。 

Creation of new proteins/peptides that bind to inorganic/organic surfaces by evolutionary molecular engineering. For example, we created an asbestos-binding protein and applied it to asbestos detection (biosensing) in environments. We also created a membrane-binding peptide in order to isolate extracellular membrane vesicle (exosome, microvesicles). 

keywords: protein engineering, evolutionary molecular engineering, inorganic/organic surfaces, biosensing, asbestos, exosome, microvesicles 

  1. 1.Application of peptides with an affinity for phospholipid membranes during the automated purification of extracellular vesicles, Sci. Rep., 10, 18718 (2020) 
  2. 2.Live-cell imaging of macrophage phagocytosis of asbestos fibers under fluorescence microscopy, Genes Env., 41, 14-25 (2019) 
  3. 3.Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing, Biotechnol J. 11, 757-767 (2016)
中島田 豊 教授 / NAKASHIMADA Yutaka Professor

カーボンリサイクル社会の実現を目指し、ライフサイクルアセスメントに基づく研究計画を策定し、再生可能資源、および 再生可能エネルギーと二酸化炭素を基質とするバイオリファイナリープロセスを開発しています。 

Aiming to realize a carbon recycling society, we make research plans based on life cycle assessment and developing several biorefinery processes using biomass, renewable energy and carbon dioxide. 

keywords: carbon recycling society, biorefinery, renewable energy 

  1. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica/Bioresour. Technol./2017 
  2. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community/Bioresour. Technol./2016 
  3. Improved methane fermentation of chicken manure via ammonia removal by biogas recycle/Bioresour. Technol./2010
廣田 隆一 教授 / HIROTA Ryuichi Professor

生命の必須元素である「リン」の代謝メカニズムと、その生物循環における役割を研究している。また、これらの知見を、 リン資源の有効活用効率的な物質生産バイオセーフティ技術に応用する研究も展開している。 

We are interested in the phosphorus metabolism of microorganisms and their contribution to global phosphorus cycling in terrestrial and aquatic environments. Based on the obtained knowledge in combination with synthetic biology, we are developing novel environmental biotechnologies for phosphorus resource management and bacterial cell growth control for biosafety measures. 

keywords: phosphate, phosphorus cycling, bacteria, cyanobacteria, environmental biotechnology, synthetic biology, biosafety 

  1. Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation. ACS Synth. Biol. 7(9): 2189-2198 (2018) 
  2. A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite. Sci. Rep. 7:44748 (2017) 
  3. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J. Biosci. Bioeng. 109:423-432 (2010)
水沼 正樹 教授 / MIZUNUMA Masaki Professor

モデル生物(酵母線虫)を用いて寿命メカニズムの解明に取り組んでいる。特に、代謝産物による老化防止、健康長 寿に着目し、その成果を、医薬のみならず食品分野へと応用展開させることを目的としている。 

Using model organisms (yeast and nematode), we are elucidating the mechanism of lifespan. In particular, we focus on the prevention of aging and healthy longevity by metabolites, and aim to apply them not only to medicine but also to the food field. 

keywordsS. cerevisiae, C. elegans, aging, lifespan 

  1. S-adenosyl-L-homocysteine extends lifespan through methionine restriction effects. Aging Cell 21: e13604 (2022) 
  2. Stimulating S-adenosyl-l-methionine synthesis extends lifespan via activation of AMPK. Proc. Natl. Acad. Sci. USA 113: 11913-11918 (2016) 
  3. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392: 303-306 (1998)
青井 議輝 准教授 / AOI Yoshiteru Associate Professor

難培養・未培養微生物の理解・利用を目指して、革新的な分離培養手法の開発と未知増殖制御機構(培養できない理 由)の解明に取り組んでいます。得られた成果の医薬・環境など幅広い分野への応用展開も図っています。

Most microorganisms in nature are not readily cultivable in the laboratory. This is the biggest impediment for understanding and application of environmental microorganisms. My research focuses on 1) innovations for microbial cultivation, 2) cultivation of uncultivated microorganisms, and 3) puzzling out the mechanism for "microbial uncultivability" of environmental microorganisms. 

keywords: uncultivable microorganisms, isolation, microbial dormancy, growth controling network 

  1. Isolation of sublineage I Nitrospira by a novel cultivation strategy/Environ. Microbiol./2014 
  2. In Situ Cultivation Allows for Recovery of Bacterial Types Competitive in Their Natural Environment/Microb. Environ./2016 
  3. Isolation of Microorganisms Using Sub-Micrometer Constrictions/PLOS One/ 2014
池田 丈 准教授 / IKEDA Takeshi Associate Professor

無機固体であるシリカ(SiO₂)を細胞内で形成する細菌を発見し、そのメカニズムの解析を進めている。生物のシリカ形成 機構を解明し、新たなバイオ融合マテリアル開発に応用することを目指している。 

My current research focuses on bacterial biosilicification (silica biomineralization), the biological process through which soluble silicic acid, Si(OH)₄, is polymerized intracellularly and deposited as insoluble silica, SiO₂. I am also working for the development of new biomaterials by integrating biomolecules with silicon-based materials (including semiconductor devices). 

keywords: biosilicification, biomaterial fabrication, silica 

  1. Discovery of long-chain polyamines embedded in the biosilica on the Bacillus cereus spore coat. J. Biosci. Bioeng. 173: 254-259 (2024) 
  2. Bacterial biosilicification: a new insight into the global silicon cycle. Biosci. Biotechnol. Biochem. 85: 1324-1331 (2021) 
  3. The C-terminal zwitterionic sequence of CotB1 is essential for biosilicification of the Bacillus cereus spore coat. J. Bacteriol. 198: 276-282 (2016)
加藤 節 准教授 / KATO Setsu Associate Professor

微生物細胞はどのようにして生存のための恒常性を維持し、そしてどのような過程を経て死滅するのでしょうか。細胞の生と死の境界がどこにあるのかを知るため、1細胞観察と定量解析を組み合わせて研究しています。 

How do microbial cells maintain cellular homeostasis for proliferation? Which kind of processes do they go through when they die? We aim to clarify the boundary of life and death and find the principles of life. These findings will help us to create useful host cells for bioprocess. 

keywords: microbial cells, single-cell observation 

  1. A constant size extension drives bacterial cell size homeostasis., Cell, 159: 1433-1446, 2014 
  2. Spatial self-organization resolves conflicts between individuality and collective migration., Nat Commun., 9:2177, 2018 
  3. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators., eLife, 6: e28842, 2017
北村 憲司 准教授 / KITAMURA Kenji Associate Professor

アミノ酸・オリゴペプチドによる微生物(酵母)の生理機能調節について、1)細胞膜輸送体の発現・活性制御や基質特 異性の研究、2)増殖阻害など新規生理作用探索とその作用機構の解明、を調べています。 

We investigate how amino acids and oligopeptides regulate physiological function of yeast cells; 1) regulation of amino acid/peptide transporter expression, 2) exploration of novel substrate of transporters, 3) unidentified physiological action of amino acids/dipeptides(e.g. growth inhibition) and its mechanism. 

keywords: yeast, amino acid, oligopeptide, transporter, growth inhibtion 

  1. Critical role of the proton-dependent oligopeptide transporter (POT) in the cellular uptake of the peptidyl nucleoside antibiotic, blasticidin S. Biochim Biophys Acta Mol Cell Res 1864: 393 (2017) 
  2. Identification of ubiquitin-proteasome system components affecting the degradation of the transcription factor Pap1. Redox Biol 28: 101305 (2020) 
  3. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 48: 235 (2016)
田島 誉久 准教授 / TAJIMA Takahisa Associate Professor

バイオ変換を効率的に行うシンプル酵素触媒を開発している。中温性酵素を発現させた低温菌を中温で熱処理すること で宿主の競合反応を抑え、有用物質が高生産される。これまでにポリマー素材高収率生産を実現した。 

My research interest is bioconversion using various kinds of enzymes. We have developed psychrophile-based simple biocatalysts(PSCats)to conduct efficient conversions. PSCats can produce the valuable compounds with high yields only by thermostable enzymes, which are heterologously expressed in psychrophilic cells whose metabolism is suppressed by heat treatment. 

keywords: efficient bioconversion, simple biocatalyst, psychrophilic bacteria 

  1. Unexpectedly high thermostability of an NADP-dependent malic enzyme from a psychrophilic bacterium, Shewanella livingstonensis Ac10, J Biosci Bioeng, 132:445-450(2021) 
  2. Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10, J Biotechnol, 312:56-62(2020) 
  3. Efficient production of 1,3-propanediol by psychrophile-based simple biocatalysts in Shewanella livingstonensis Ac10 and Shewanella frigidimarina DSM 12253, J Biotechnol, 323:293-301(2020)
中ノ 三弥子 准教授 / NAKANO Miyako Associate Professor

タンパク質翻訳後修飾の1つである糖鎖付加は、細菌やウイルスなどの病原体の感染、癌化、薬物耐性獲得などに関 わっている。これらの生物学的な機序を質量分析装置などを用いた糖鎖構造解析法により解明する。

Glycosylation, which is one of the posttranslational modifications of proteins, is involved in infection by pathogens such as bacteria and viruses, cancer and acquisition of drug-resistance. We investigate these biological mechanisms with detailed analysis of glycan structures by mass spectrometry. 

keywords: glycan, mass spectromery, biomarker 

  1. Dynamic movement of the Golgi unit and its glycosylation enzyme zones. Nat Commun. 15(1):4514 (2024) 
  2. Structural analysis of the GPI glycan. PLoS One. 16(9):e0257435 (2021) 
  3. N-Glycan profiling by liquid chromatography-mass spectrometry (LC-MS). Glycoscience Protocols (GlycoPODv2)[Internet](2021)
藤江 誠 准教授 / FUJIE Makoto Associate Professor

バクテリアやファージ等の微生物と植物の相互作用の研究を行い、病害防除への応用を目指しています。また、有用物質 を生産するために、微細藻類ゲノム編集技術を開発しています。 

We are studying the interaction of microorganisms, such as bacteria and phages, with plants, with the aim of applying them to disease control. We are also developing genome editing technology for algae to produce useful substances, such as biodiesel or EPA. 

keywords: algae, microorgnisms, biodiesel, genome-editing 

  1. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J. 16:3715-3723. (1997) 
  2. The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiology.124: 1087-1095. (2000) 
  3. Monitoring growth and movement of Ralstonia solanacearum cells harboring plasmid pRSS12 derived from bacteriophage φRSS1. J. Biosci. Bioeng., 109. 153 – 158. (2010)
舟橋 久景 准教授 / FUNABASHI Hisakage Associate Professor

生体分子や生細胞を機能性材料として捉え、バイオデバイスとしての活用法を開拓する。タンパク質、核酸などを利用 したバイオセンシング分子開発や、生細胞応答測定法生細胞機能制御法の開発などを行っている。 

Our research focuses on the utilization of biomolecules and living cells as functional materials to create biodevices. We are developing novel functional molecules such as biosensing molecules with proteins or nucleic acids. We are also exploring new methods to create, evaluate, and manipulate functional living cells. 

keywords: biodevices, biosensensing molecules, cellular devices 

  1. Insulin sensor cells for the analysis of insulin secretion responses in single living pancreatic β cells, Analyst, 144, 3765-3772, 2019 
  2. Continuous monitoring of specific mRNA expression responses with a FRET-based DNA nano-tweezer technique that does not require gene recombination, Analytical Chemistry, 88, 7894-7898, 2016 
  3. A split G-quadruplex-based DNA nano-tweezers structure as a signal-transducing molecule for the homogeneous detection of specific nucleic acids, Biosensors & Bioelectronics, 74, 222-226, 2015
石田 丈典 講師 / ISHIDA Takenori Associate Professor or Lecturer

生体分子(ペプチドなど)と固体表面との界面を制御して、バイオと異分野を繋ぐ研究を進めている。脂質二重層という有 機的界面とペプチドとの相互作用を利用し、エクソソームの精製技術の開発や研究を行っている。 

My research connects biotechnology and different fields using biomolecules that interact with the surface of inorganic (asbestos) or organic (lipid bilayer). Recently, we are developing peptides that bind to the lipid bilayer of exosomes, which has the potential to be used in regenerative medicine, and applied it to exosome purification. 

keywords: peptides, binding peptides, asbestos, exosome 

  1. Application of peptides with an affinity for phospholipid membranes during the automated purification of extracellular vesicles. Sci Rep . 10:18718 (2020) 
  2. Live-cell imaging of macrophage phagocytosis of asbestos fibers under fluorescence microscopy. Genes Environ. 41:14 (2019) 
  3. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing. Biotechnol J . 11:757 (2016)
小川 貴史 助教 / OGAWA Takafumi Assistant Professor

モデル生物の酵母線虫を用いて、①栄養応答経路が制御する細胞成長・代謝・ストレス抵抗性、および②老化によっ て栄養応答性が破綻するメカニズム、を研究し、老化における栄養応答機能の役割の解明を目指している。 

Studying nutrient signaling in yeast Saccharomyces cerevisiae and nematode Caenorhabditis elegans, I investigate how it regulates cell growth, metabolism, and stress resistance. I also explore how nutrient responsiveness alters with age, aiming to understand its significance in aging processes. 

keywords: yeast, nematode, aging, growth, metabolism, nutrient sensing 

  1. S‐adenosyl‐L‐homocysteine extends lifespan through methionine restriction effects. Aging Cell 21: e13604 (2022) 
  2. Stimulating S-adenosyl-l-methionine synthesis extends lifespan via activation of AMPK. Proceedings of the National Academy of Sciences 113: 11913-11918 (2016) 
  3. Ras/cAMP-dependent Protein Kinase (PKA) Regulates Multiple Aspects of Cellular Events by Phosphorylating the Whi3 Cell Cycle Regulator in Budding Yeast. Journal of Biological Chemistry 288: 10558-10566 (2013) 
緋田 安希子 助教 / HIDA Akiko Assistant Professor

環境中での細菌の挙動(病原菌の植物感染など)を制御するために、細菌運動性における物質認識に着目している。病 原菌が植物根から分泌される特定の物質を目印にして植物体を探索し移動することを見出してきた。 

Studies on mechanism of chemical recognition involved in directional motility of environmental bacteria and its roles in biological interactions such as infection and symbiosis, and its applications to biotechnology. 

keywords: bacteria, motility, plant pathogen 

  1. Chemotactic disruption as a method to control bacterial wilt caused by Ralstonia pseudosolanacearum. Biosci Biotech Biochem (2020) 
  2. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29. Sci Rep (2017) 
  3. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and L-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum(formerly Ralstonia solanacearum phylotype I and III). App Environ Microbiol (2015)
古水 千尋 助教 / FURUMIZU Chihiro Assistant Professor

植物は様々な環境変化に対して体の成長や生理機能を柔軟に変化させて応答する。環境応答の仕組みを分子レベルで 理解し、応用展開を図って、私たちの社会や環境に役立てる研究を目指している。 

Plants respond to shifting environmental conditions by changing their growth, development, and physiology. Our goal is to decipher its molecular underpinnings and to harness the power of plants for the good of society and environment. 

keywords: plants, cell differentiation, intercellular signaling, molecular evolution, RNA modifications, signaling peptides 

  1. The sequenced genomes of non-flowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell. 33: 2915- 2934 (2021) 
  2. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet. 11: e1004980 (2015) 
  3. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife. 5. pii: e15023 (2016)
渡邉 研志 助教 / WATANABE Kenshi Assistant Professor

油脂生産微生物およびそれらが持つ酵素の機能を強化し、未利用資源の有用油脂への転換に応用することで資源循 環型社会の構築への貢献を目指しています。 

We aim to contribute to the construction of a resource-recycling society by enhancing the functions of oleaginous microorganisms and their enzymes and applying them to the conversion of unused resources into useful lipids. 

keywords: microorganisms, lipid, biorefinery, metabolic engineering, enzyme 

  1. Improvement of fatty acid productivity of thraustochytrid, Aurantiochytrium sp. by genome editing. J. Biosci. Bioeng., 131, 373-380(2021) 
  2. Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information. J. Oleo Sci., 67, 571-578(2018) 
  3. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases. J. Lipid Res., 57, 89-99 (2016)
赤尾 健 客員教授 / AKAO Takeshi Visiting Professor

醸造用酵母の菌株の個性の評価醸造特性予測維持管理を目的とし、変異・系統解析、醸造特性(高発酵、香味生成) の機構解析、遺伝子マッピング系の開発などの応用ゲノミクス及び遺伝学を展開しています。 

We study about industrial yeast for sake and shochu making, based on applied genomics and genetics. For the purpose of characteristic evaluation, property prediction, and maintenance of the strains, we advance phylogenetic study, molecular biology of fermentation, stress responses and flavor compound, as well as development of genetic mapping systems. 

keywords: sake yeast, genomics, genetics, brewing characteristics 

  1. Development of sake yeast haploid set with diverse brewing properties using sake yeast strain Hiroshima no. 6 exhibiting sexual reproduction/J. Biosci. Bioeng./2020 
  2. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates in Saccharomyces cerevisiae sake yeast strains/Appl. Environ. Microbiol./2012 
  3. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7/DNA Res./2011
磯谷 敦子 客員教授 / ISOGAI Atsuko Visiting Professor

酒類香気成分に関する研究を行っています。清酒焼酎のフレーバーに関わる成分の探索、その生成機構の解明や 制御方法の開発に取り組んでいます。 

The main research theme is aroma of alcoholic beverages. We try to clarify the components responsible for the aroma of Japanese sake and shochu, elucidate their formation mechanism, and develop the techniques for controlling them. 

keywords: sake, shochu, aroma 

  1. Construction of sake yeast with low production of dimethyl trisulfide (DMTS) precursor by a self-cloning method, J. Biosci. Bioeng., 2018 
  2. Study for practical application of supported gold nanoparticles for removal of DMTS responsible for hineka in sake, J. Brew. Soc. Jpn. (2019) 
  3. Aroma Compounds responsible for the “spicy/4VG” character of sake submitted to Sake Contests, J. Brew. Soc. Jpn.(2016)
岩下 和裕 客員教授 / IWASHITA Kazuhiro Visiting Professor

人間の感性はとても複雑で、それに挑むのが醸造研究です。原料から麹菌、酵母、日本酒そのもの、さらに人間の感性 まで全ての研究が必要で、この広大な世界にゲノムメタボロームAIを使って挑戦をしています。 

The essence of brewing study is to challenge the complicated human sensory and perception. All studies about raw materials, Koji-fungi, yeast, chemistry of sake, and human sensitivity are required. We explore this deep world using genomics and metabolomics, with the support of artificial intelligence. 

keywords: taste, brewing science, genomics, metabolomics, artificial intelligence 

  1. Investigation of relationship between sake-making parameters and sake metabolites using a newly developed sake metabolome analysis method/ J. Biosci. Bioeng./2019 
  2. Effect of koji starter on metabolites in Japanese alcoholic beverage sake made from the sake rice Koshitanrei/ Biosci. Biotechnol. Biochem./2020 
  3. Analysis of metabolites in Japanese alcoholic beverage sake made from the sake rice Koshitanrei/Biosci. Biotechnol. Biochem./2019
藤井 達也 客員准教授 / FUJII Tatsuya Visiting Associate Professor

カビ酵母等の真核微生物を中心に、これらが示す多彩な表現型(有用物質高生産性、各種ストレス耐性など)のメカニ ズムを分子レベルで解明し、再生可能資源の有効利用に役立てることを目指しています。 

To use filamentous fungi and yeasts effectively, we aim to reveal the mechanisms of their various phenotypes such as high-productivity of useful materials and high stress tolerance. 

keywords: filamentous fungus, yeast, renewable resources 

  1. The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol. (2020) 
  2. Identification and characterization of a GH30-7 endoxylanase C from the filamentous fungus Talaromyces cellulolyticus. Appl Environ Microbiol. (2019) 
  3. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun. (2018)


up