• homeHome
  • (Oct 25) The 68th Hiroshima University Biomass Evening Seminar(The 41st Hiroshima University ACE Seminar)

(Oct 25) The 68th Hiroshima University Biomass Evening Seminar(The 41st Hiroshima University ACE Seminar)

Biomass Project Research Center, Hiroshima University, and HOSTY Association are co-organizing the Hiroshima University Biomass Evening Seminar. This seminar covers topics from the fundamentals of biomass to the latest information so that it can contribute the activities on biomass in this district. The 68th seminar will be held as follows. Please join.

Date & Time

Thursday, 25 October 2018, 16:20-17:50

Place

Engineering 110 Lecture Room, Higashi-Hiroshima Campus, Hiroshima University

  • For the access to the venue, click here.
  • For the campus map, click here.
  • For the layout of the lecture rooms, click here. (It automatically directs you to a Japanese page.)

Program

Commentary and Chair: Yukihiko MATSUMURA
Professor, Graduate School of Engineering, Hiroshima University

◆Lecture: Apip AMRULLAH
D3 Student, Graduate School of Engineering, Hiroshima University

“Gasification Characteristics of Sewage Sludge under Subcritical Water Conditions”
The gasification sewage sludge in sub-critical water was investigated in a continuous flow reactor. A continuous reactor was employed and experiments were conducted by varying the temperature 300 and 350 °C and residence time 5-30 s with the fix pressure of 25 MPa. The effect of temperature and time on the composition of the product gas were investigated. The gaseous products were analyzed by using a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). H2 was detected by GC-TCD with N2 as the carrier gas; CO2 and CO were detected by GC-TCD with He as the carrier gas, and CH4, C2H4, and C2H6 were detected by GC-FID with He as the carrier gas. The results shown the gaseous product mainly contained H2 and CO2 with less amount of CH4 and C2H4, no CO was found. Temperature has not effected on carbon gas efficiency.

◆Lecture: Toshiaki Hanaoka
Senior Research Scientist, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)

“Simulation and estimation of 1,3-butadiene production process from lignin via syngas”
Three processes for the production of 1,3-butadiene (1,3-BD) from lignin via syngas were proposed and the 1,3-BD yields and power and heat loads were estimated through process simulation. These processes consisted of lignin gasification, conversion of syngas to light olefins (LOs) via (1) dimethyl ether (DME), (2) methanol, or (3) direct synthesis, and isomerization/dehydrogenation of n-C4H8. The process capacity was 200 t/d on a wet lignin basis. The electric power was largely dependent on the process (4777–6073 kW) while the minimum external heat was 97 kW according to pinch analysis. When each reaction proceeded ideally, the process via DME was the most promising.

We will hold the discussion meeting from 18:00 (800 JPY needed). Join this meeting, too if you are available.

Inquiries:
HOSTY Association (Graduate School of Engineering, Hiroshima University)

E-mail: bprc*hiroshima-u.ac.jp (Please replace * with @)


up